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INTRODUCTORY REMARKS

 

This issue of 

 

Graph Theory Notes of New York

 

 is dedicated to Michael L. Gargano (1947–2008). Mike

passed away on May 31, 2008 at the peak of his creative and inspirational activity. As a member of our edi-

torial board, Mike was an active supporter of 

 

Graph Theory Notes of New York

 

 and of the associated Graph

Theory Day meetings. He held a joint appointment in the Computer Science and Mathematics Departments

at Pace University, where he had been for 30 years. For those who knew Mike, his ability to find a wide

range of interesting mathematical topics to study was impressive. Mike’s interests were indeed diverse. He

explored many applications of mathematics (graph theory and combinatorics) and computer science to

archaeology, anthropology, biology, history, literature, psychology, political science, sociology, genetics,

and the use of discrete mathematics in the combined areas of terrorism and security. One of Mike’s favorite

tools was to apply genetic algorithms to diverse areas. Simply stated Mike was a scholar.

This facet of Mike Gargano was indeed an inspiration to his colleagues and to his students. Another facet

was his role model as a person. He was generous to all that came into contact with him, almost always in a

good mood, and as many can relate stories about, he was a teller and appreciator of jokes. He was a person

one enjoyed being with. The shock of his passing is over, the mourning is subdued but is still deep, and it is

now time to realize how fortunate we are to have had the joy of knowing Mike.

Graph Theory Day 55 was hosted by Hartwick College, Oneonta, New York. The local organizer was Gary

E. Stevens of Hartwick College. The invited speakers were Ralph Grimaldi and Stephen Hedetniemi.

Regretably, because of a last minute family emergency, Steve Hedetniemi was unable to attend. Instead,

Steve made available the content and materials for his talk and we appreciated its delivery by Gary Stevens.

Potential contributors of articles to 

 

Graph Theory Notes of New York

 

 are asked to consult the inside of the

back cover for submission instructions. Those that enjoy Graph Theory Days are encouraged to ask their

institutions to host one of these biannual events so that this twenty-eight year tradition continues to flourish. 

As always we thank all the supporters of 

 

Graph Theory Notes of New York

 

 and Graph Theory Days.            

JWK/LVQ

New York

November 2008
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[GTN LV:1] VARIABLE NEIGHBORHOOD SEARCH FOR 
EXTREMAL GRAPHS: 25. PRODUCTS OF 
CONNECTIVITY AND DISTANCE MEASURES 

 

Variable neighborhood search J, Sedlar, D. Vuki

 

ã
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, M. Aouchiche, and P. Hansen –13 (2008) 

 

Jelena Sedlar

 

1

 

, D. Vuki evi

 

1

 

, 
Mustapha Aouchiche

 

2

 

, and Pierre Hansen

 

2

 

1

 

Department of Mathematics
University of Split
Split, CROATIA
<Jelena.Sedlar@gradst.hr>
<vukicevi@pmfst.hr>

 

2

 

GERAD and HEC Montreal
Montreal, Quebec, CANADA
<mustapha.aouchiche@gerad.ca>
<pierre.hansen@gerad.ca>

 

Abstract

 

Upper bounds for products of four measures of distance in graphs: diameter, radius, average eccen-
tricity, and remoteness with three measures of connectivity: vertex connectivity, algebraic connectiv-
ity, and edge connectivity are analyzed. Twelve conjectures were obtained by using AGX 2 software.
Eight of them are proved to be correct, three are disproved, and one remains an open problem.

 

1. Introduction

 

Let  be an undirected connected graph of order  and size . Let  denote the
degree of . The 

 

minimum

 

 and 

 

maximum degrees

 

 of 

 

G

 

 are denoted by 

 

δ

 

 and 

 

Δ

 

, respectively.

An 

 

edge

 

 (

 

vertex

 

) 

 

cut

 

 in 

 

G

 

 is a set of edges (vertices) of 

 

G

 

 deletion of which disconnects 

 

G

 

 or reduces it to a
single vertex. The size of an edge (vertex) cut is the number of edges (vertices) it contains. The 

 

edge

 

 (

 

vertex

 

)

 

connectivity

 

 is the size of a smallest edge (vertex) cut. The 

 

Laplacian matrix

 

 

 

L

 

 of 

 

G

 

 is defined by
, where 

 

Deg

 

 is the diagonal matrix of vertex degrees and 

 

A

 

 is the adjacency matrix of 

 

G

 

. The

 

algebraic connectivity

 

 

 

a

 

 is the second smallest eigenvalue of 

 

L

 

.

Let  denote the 

 

distance

 

 between vertices 

 

u

 

 and 

 

v

 

. The 

 

eccentricity

 

 of a vertex 

 

v

 

 in 

 

G

 

 is the maximum
distance from 

 

v

 

 to any other vertex in 

 

G

 

. The 

 

diameter

 

 

 

D

 

 of 

 

G

 

 is the maximum eccentricity. The 

 

radius

 

 

 

r

 

 of

 

G

 

 is the smallest eccentricity. The 

 

average eccentricity

 

 is denoted by 

 

ecc

 

. The 

 

transmission

 

 of a vertex 

 

v

 

 in a
graph 

 

G

 

 is the sum of the distances between 

 

v

 

 and all other vertices of 

 

G

 

. The transmission is said to be nor-
malized if it is divided by . The 

 

remoteness

 

 

 

ρ

 

 is the maximum normalized transmission, or, in other
words, the largest average distance between any vertex and all vertices.

Let , , and  denote, respectively, the complete graph, the cycle graph, and the path graph of order

 

n

 

. A set 

 

M

 

 of disjoint edges is called a 

 

matching

 

; a matching that covers all vertices is a 

 

perfect matching

 

.

Distance and connectivity measures in graphs appear to be antinomic: Roughly speaking, the larger the dis-
tance the smaller the connectivity, and conversely. This suggests the interest in studying products of distance
and connectivity measures.

In the thesis 

 

[1]

 

 (see also 

 

[2]

 

 for a summary) a systematic comparison was made on relations between pairs
of graph invariants selected from a set of 20 invariants that included the connectivity measures, 

 

ν

 

, 

 

a

 

, and 

 

κ

 

,
as well as the distance measures 

 

D

 

, 

 

r

 

, 

 

ecc, 

 

and 

 

ρ

 

. The general form of these relations, called AGX Form 1, is

where 

 

i

 

1

 

 and 

 

i

 

2

 

 are graph invariants, 

 

⊕

 

 denotes one of the four operations 

 

−

 

, 

 

+, /, and ×;  and  are
lower and upper bounding functions for  that depend on the order n (or number of vertices) of the
graphs under consideration. These bounding functions are required to be best possible in the strong sense; that

č ć

G V E,( )= n V= m E= d v( )
v V∈

L Deg A–=

d u v,( )

n 1–

Kn Cn Pn

b n( ) i1 i2⊕ b n( ),≤ ≤

b n( ) b n( )
i1 i2⊕
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is, for all n (except possibly for very small values due to border effects) there is a graph such that the lower
(upper) bound is attained. In this paper, we focus on results from that study that concern the upper bound on
a product of a connectivity measure and a distance measure, among those cited above. More precisely, we
study relations of the form

(1)

where  and 

The relationships of the form (1) that are discussed and proved in this paper were obtained, as well as many
others [1]–[3], with the system AGX 2 [4]. This discovery system is described, together with its results, in a
series of papers (see [2][5] for references), to which the present paper also belongs. It is based on the follow-
ing observation: A large variety of problems in extremal graph theory can be viewed as parametric combina-
torial optimization problems defined on the family of all graphs (or some restriction thereof) and solved by a
generic heuristic. The parameter is usually the order n of the graph considered (sometimes the order n and the
size m). The heuristic fits in the variable neighborhood search metaheuristic framework [6]–[8]. Presumably,
extremal graphs are found by performing a series of local changes (removal, addition, or rotation of an edge,
etc.) until a local optimum is reached, then, by applying increasingly large perturbations, followed by new
descents; if a graph better than the incumbent one is found, the search is recentered there. After the parametric
family of extremal graphs has been found, relationships between graph invariants may be deduced from them
by using various data mining techniques [9]. These include (1) a numerical method based on principal com-
ponent analysis, which yields a basis of affine relations between the graph invariants considered; (2) a geo-
metric method that uses a gift-wrapping algorithm to find the convex hull of extremal graphs viewed as points
in the invariant space; facets of this convex hull give inequality relations; (3) an algebraic method that recog-
nizes families of graphs and then exploits a database of formulæ giving expressions of invariants as functions
of n on these families; substitution in (1) then leads to linear or nonlinear conjectures. As mentioned above,
a systematic comparison of 20 invariants was made in [1]. The results summarized in [2] are available in
detail on the website <http://www.gerad.ca/~agx>, and are currently being proved in a series of papers (see
[5] for references).

The AGX 2 software produced the following conjectures [1] on the upper bounds of products of one of
 with one of .

We proved eight of these 12 claims and disproved three of them; one conjecture remains an open problem.
This is summarized in the following table.

Table 1: Conjectures

D r ecc ρ

ν
if n is even

if n is odd

 a
if n is even

if n is odd

κ
if n is even

if n is odd

Table 2: Summary

D r ecc ρ

ν proved proved proved proved

 a proved proved proved proved

κ disproved open disproved disproved

i1 i2⊕ b n( ),≤

i1 ν a κ, ,{ }∈ i2 D r ecc ρ, , ,{ }.∈

ν a κ, ,{ } D r ecc ρ, , ,{ }

2n 4– 4 n
2
---⋅ 4–

2n 4–
n 1–

2n 5– 2
n
---+

2n 4– 4 n
2
---⋅ 4–

2n 4–
n 1–

2n 5– 2
n
---+

2n 4– 4 n
2
---⋅ 4–

2n 4–
n 1–

2n 5– 2
n
---+



8 Graph Theory Notes of New York LV (2008)

gtn 5501 Hans&.fm page proofs printed (jwk) March 16, 2009 

Each of the following sections is dedicated to one of the distance measures: diameter, radius, average eccen-
tricity, and remoteness. Each of these invariants is combined with the three connectivity measures.

2. Connectivity and Diameter

In this section, we prove the upper bounds on  and  and give a counterexample for the conjectured
upper bound on .

Theorem 1: Let G be a connected graph on  vertices with vertex connectivity ν and
diameter D. Then , with equality if and only if G is K3 or , where M
is a matching.

Proof: If , then G is K3 or P3, and equality holds in both cases.

If , where M is a matching, then  and , so equality holds.

If , the claim obviously holds, so suppose that . Let x and y be two vertices at distance D. Note
that the set of vertices, V, can be decomposed into  where Vi is the set of vertices
at distance i from x. Obviously, Vi is a cut-set of vertices of G for each i. Hence,  for each

. Also, . Hence, , or equivalently, . Since
 ( ), then .

If equality holds, then  and , but then  and , which implies that
, where M is a matching. �

To prove the upper bound on , we need an intermediate result. This is formulated in the following
lemma.

Lemma 2: If , where M is a matching, then .

Proof: It is shown in [10] that for a complete k-partite graph  with vertex set partition
, then . Now,  can be seen as a complete

-partite graph for which . Thus the lemma follows. �

Theorem 3: Let G be a connected graph on  vertices, , with algebraic connec-
tivity a and diameter D. Then  with equality if and only , where
M is a matching.

Proof: Using Lemma 2, it is easy to see that equality holds if .

If  then [11]  and . Hence, , with equality if and only if , that
is, .

Now suppose that , then [11] . Thus, using Theorem 1, we have  with
equality if and only . �

Consider, now, the conjecture for the upper bound on .

Conjecture 4: Let G be a connected graph on  vertices with edge connectivity κ and
diameter D. Then , with equality if and only if , where M is a
matching. �

The above conjecture is not true.We give a simple counterexample. Let  be disjoint graphs. By
 we mean the sequential join, which is defined as follows:

, and

The graph  contains  vertices and satisfies  and
. Thus,  and the graph H is a counterexample to Conjecture 4.

3. Connectivity and Radius

In this section, we prove the upper bounds on  and , and give the conjecture for the upper bound on
 that remains open. First, we need an intermediate result that we state and prove in the following lemma.

ν D⋅ a D⋅
κ D⋅

n 3≥
ν D⋅ 2n 4–≤ Kn\M

n 3=

G Kn\M≅ ν n 2–= D 2=

G Kn≅ G�Kn
V V 0 V 1 … V D,∪ ∪ ∪=

ν V i≤
i 1 … D 1–, ,= V D V 0≥ 1= 2 D 1–( ) ν⋅+ D ν⋅ n 2– ν+≤
ν n 2–≤ G�Kn D ν⋅ 2n 4–≤

ν n 2–= D 2= δ n 2–= D 2=
G Kn\M≅

a D⋅

G Kn\M≅ a n 2–=

G V E,( )=
V V 1 V 2 … V k∪ ∪ ∪= a G( ) n maxi 1 … k, ,= V i–= Kn\M
n p–( ) maxi 1 … n p–, ,= V i 2=

n 3≥ G�K3
a D⋅ 2n 4–≤ G Kn\M≅

G Kn\M≅
G Kn≅ a n= D 1= a D⋅ n 2n 4–≤= n 4=
G K4≅

G�Kn a ν≤ a D⋅ ν D⋅ 2n 4–≤ ≤
G Kn\M≅

κ D⋅

n 3≥
κ D⋅ 2n 4–≤ G Kn\M≅

G1 G2 … Gl, , ,
G G1 G2 … Gl+ + +=

V G( ) V G1( ) V G2( ) … V Gl( )∪ ∪ ∪=

E G( ) E G1( ) … E Gl( ) xy : x V Gi( )∈ y V Gi 1+( )∈ i 1 … l 1–, ,=, ,{ }∪ ∪ ∪ .=

H K1 K25 K5 K5 K25 K1+ + + + += n 62= κ H( ) 25=
D H( ) 5= κ D⋅ 125 120> 2n 4–= =

ν r⋅ a r⋅
κ r⋅
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Lemma 5: Let G be a connected graph on an odd number of vertices  with vertex con-
nectivity ν, minimum degree , and maximum degree . Then

 if and only if the complement  of G does not contain C4.

Proof: Suppose . From  and , it follows that  consists of disjoint paths and
cycles. Suppose the lemma does not hold, that is,  contains a cycle C4. Let v1, v2, v3, and v4 denote the ver-
tices of one C4 from . Therefore, in the graph G, among the four vertices, v1 is adjacent only to v3, and v2
is adjacent only to v4. Hence, the set of vertices  is a cut in G. Thus, , which is a
contradiction.

Suppose now that the complement  does not contain any C4. Let V′ be a smallest vertex cut set in G. We
want to prove that . Note that , since . Furthermore,  is a
connected subgraph of  since  is not connected. �

Theorem 6: Let  be a connected graph on  vertices, with vertex connec-
tivity ν and radius r. Then  with equality if and only if G is K5, or

, where M is a perfect matching, if n is even; or G is a graph with  and
 such that  does not contain C4.

Proof: We distinguish two cases.

Case 1: G is a graph with . In this case, from  it follows that . If n is even, then
 fo r  ,  and  t he  i nequa l i t y  ho ld s .  I f  n  odd ,  t hen

 for  with equality if and only if  and .

Case 2: G is a graph with . Let v0 be a vertex with minimum eccentricity and let vr be a vertex of G such
that . Let  for . Obviously,  = ∅
for all . Also, Vi is a vertex-cut set for all , so  for all . Furthermore,

 and . Therefore, we have

Thus,

(2)

If n is even, since  then  and , which is the desired bound. Equal-
ity holds if and only if  and . Therefore,  and the corresponding graph is
exactly , where M is a perfect matching.

If n is odd, from  it follows that each vertex is not connected to at least one vertex. Since n is odd there
must be at least one vertex, say v1, that is not connected to at least two vertices, say v2 and v3. Note that

 is a vertex cut set, so that . Using (2), we have that  with possible
equality if ; in which case ν is even (since n is odd) and then  is also even, whereas  is
odd. Hence, , which is the desired bound. Equality holds if and only if

 and , which implies that . Note that the case  cannot
hold since n and  are odd. Thus,  and . Therefore, characterization of the extremal
graphs, in this case, follows from Lemma 5. �

Now we consider the upper bound on .

Theorem 7: Let G be a connected graph on , , with algebraic connectivity a
and radius r. Then . That the bound is best possible is shown by K4 and

, where E is a perfect matching if n is even, and E is a set of connected components
in  on at least two and at most three vertices each.

Proof: If , then  for  with equality if and only if .

If , according to [11],  and the inequality follows from Theorem 6.

To characterize the extremal graphs, let  be a connected graph that satisfies the equality. Then,
the bound in Theorem 6 is also attained. Thus, G is as described in Theorem 6 and it remains to prove that,
indeed, for such a graph, . If n is even, the result follows from Lemma 2. If n is odd and the connected

n 5≥
δ n 3–= Δ n 2–≤

ν n 3–= G

ν n 3–= δ n 3–= Δ n 2–≤ G
G

G
V \ v1 v2 v3 v4, , ,{ } ν n 4–≤

G
V′ n 3–= V′ n 3–≤ V′ ν Δ n 3–≤ ≤= G\V′

G G\V′

G V E,( )= n 4≥
ν r⋅ 4 n 2⁄ 4–≤

G Kn\M≅ δ n 3–=
Δ n 2–≤ G

r 1= ν n 1–≤ ν r⋅ n 1–≤
4 n 2⁄ 4– 2n 4 n 1–>( )–= n 4≥
4 n 2⁄ 2n 6– n 1–≥= n 5≥ n 5= G K5≅

r 2≥
ecc v0( ) d v0 vr,( ) r= = V i u V∈ d u v0,( ) i=,{ }= i 0 1 … r, , ,= V i V j∩

i j≠ 1 i r 1–≤ ≤ V i ν≥ 1 i r 1–≤ ≤
V 0 1= V r 1≥

n V i
i 0=

r

∑ 2 r 1–( ) ν.⋅+≥=

r ν⋅ n ν 2.–+≤
r 2≥ ν n 2–≤ r ν⋅ 2n 4–≤ 4 n 2⁄ 4–=

ν n 2–= r 2= δ Δ n 2–= =
G\M

r 2≥

V \ v1 v2 v3, ,{ } ν n 3–≤ r ν⋅ 2n 5–≤
ν n 3–= r ν⋅ 2n 5–

r ν⋅ 2n 6–≤ 4 n 2⁄ 4–=
ν n 3–= r 2= n 3– δ Δ n 2–≤ ≤ ≤ δ Δ n 2–= =

n 2– δ n 3–= Δ n 2–≤

a r⋅

n 4≥ G�K5
a r⋅ 4 n 2⁄ 4–≤

Kn\E
G

G Kn≅ a r⋅ n 4 n 2⁄ 4–≤= n 4≥ n 4=

G�Kn a δ≤
G�K4

a ν=
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components of  contain at least two and at most three vertices each, then G contains a subgraph that is a
complete multipartite graph in which an independent set contains at least two and at most three vertices. Thus,
using Lemma 2, , and the equality holds. Now, if  contains a component on at least four vertices,
take four vertices, v1, v2, v3, and v4, from this component such that the induced subgraph H of  on

 is connected. Let G1 be the induced subgraph of G on W. Note that G1 is connected if
and only if  (where P4 is the path graph on four vertices); thus . Consider the graph G′
obtained from the complete graph on  and G1 by inserting all possible edges between  and W.
Because algebraic connectivity is non decreasing with respect to edge addition, then . Accord-
ing to [11],  Therefore, .

�

The following conjecture, concerning the upper bound on , remains open.

Conjecture 8: Let  be a connected graph on , with edge connectivity κ
and radius r. Then , with equality if and only if G is K5, or ,
where M is a perfect matching, if n is even, or G is a graph with  and 
such that  does not contain C4. �

4. Connectivity and Average Eccentricity

In this section, we prove the upper bounds on  and , and construct an infinite family of counter-
examples for the conjectured upper bound on .

Theorem 9: Let G be a connected graph on  vertices with vertex connectivity ν and
average eccentricity ecc. Then

with equality if and only if , where M is a matching on  edges.

Proof: If n is even the bound follows from Theorem 1 and the fact that . Equality holds if and only
if  and , in which case the corresponding graph is  where M is a perfect matching.

If n is odd and , then  and  for all .

If n is odd and , then as seen in the proof of Theorem 1, .
Thus .

If n is odd and , then . Let t be the number of vertices of degree δ. We have

Thus

The last bound is maximum if and only if  and corresponds to . It is easy to see that
the corresponding extremal graph is  where M is a matching on  edges. �

Theorem 10: Let G be a connected graph on  vertices, , with algebraic con-
nectivity a and average eccentricity ecc. Then

with equality if and only if G is K4 or , where M is a matching on  edges.

Proof: If , then . If n is even,  with equality if and only if ,
which corresponds to . If n is odd,  for all .

Now, suppose that . In this case the inequality follows from Theorem 9 and the fact that  [11].

G

a n 3–= G
G

W v1 v2 v3 v4, , ,{ }=
G1 H P4≅ ≅ a G1( ) 1<

V \W V \W
a G( ) a G′( )≤

a G′( ) min a Kn 4–( ) W+ a G1( ) V \W+,{ }.≤ a G( ) a G′( ) a G1( ) n 4–+ n 3–<≤ ≤

κ r⋅

G V E,( )= n 4≥
κ r⋅ 4 n 2⁄ 4–≤ G Kn\M≅

δ n 3–= Δ n 2–≤
G

ν ecc⋅ a ecc⋅
κ ecc⋅

n 4≥

ν ecc⋅ 2n 5– 2 n⁄+ if n is odd

2n 4– if n is even,⎩
⎨
⎧

≤

G Kn\M≅ n 2⁄
ecc D≤

ν n 2–= ecc 2= Kn\M

ν 1= G Kn≅ ν ecc⋅ n 1– 2n 5– 2 n⁄+<= n 5≥
ν n 3–≤ ν D⋅ n 2– ν+≤ n 5– 2n 5– 2 n⁄+<=

ν ecc⋅ 2n 5– 2 n⁄+<
ν n 2–= δ n 2–=

ecc 2t n t–+
n

---------------------- n t+
n

-----------.= =

ν ecc⋅ n 2–( ) n t+
n

-----------⋅ n 2– n 2–
n

------------t .+= =

t n 1–= 2n 5– 2 n⁄+
Kn\M n 2⁄

n 3≥ G�K3

a ecc⋅ 2n 5– 2 n⁄+ if n is odd

2n 4– if n is even,⎩
⎨
⎧

≤

G Kn\M≅ n 2⁄
G Kn≅ a ecc⋅ n= a ecc⋅ n 2n 4–≤= n 4=

G Kn≅ a ecc⋅ n 2n 5– 2 n⁄+<= n 5≥
G�Kn a ν≤
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To characterize the extremal graphs, it is easy to see that equality, in the present case, holds if and only if
equality holds in Theorem 9 and . Thus we must have  with  if n is even,
in which case the extremal graph corresponds to the complement of a perfect matching, or with

, in which case the extremal graph corresponds to a complement of a matching on 
edges. �

Conjecture 11: Let G be a connected graph on  vertices, , with edge connec-
tivity κ and average eccentricity ecc. Then

with equality if and only if G is K4 or , where M is a matching on  edges.
�

This conjecture is not true. Consider the following sequential join

where there are 6x summands in the sum. It can easily be checked that .

To disprove Conjecture 11, it is sufficient to prove that

.

Let l denote this double limit, then

Therefore Conjecture 11 is refuted.

5. Connectivity and Remoteness

In this section, we prove the upper bounds on  and . Then, we give an infinite family of counter-
examples for the upper bound on .

Theorem 12: Let G be a connected graph on  vertices with vertex connectivity ν and
remoteness ρ. Then  with equality if and only if G is the complete graph Kn.

Proof: It is obvious that equality holds for Kn. Now suppose that  and , then . From the
proof of Theorem 1, . Also, it is easy to see that

Hence,

a ν= a ν δ n 2–= = = ecc 2=

ecc 2 1 n⁄–= n 1–( ) 2⁄

n 3≥ G�K3

κ ecc⋅ 2n 5– 2 n⁄+ if n is odd

2n 4– if n is even,⎩
⎨
⎧

≤

G Kn\M≅ n 2⁄

Gk x, K
2 k

Kk K
2 k

K
2 k

Kk K
2 k

… K
2 k

Kk K
2 k

,+ + + + + + + + +≅

κ Gk x,( ) k=

ecc Gk x,( ) k⋅
n Gk x,( )

------------------------------- 2>
k ∞→
lim

x ∞→
lim

l
k2 2 k3x k 3x 1+( ) 2 k 3x 2+( ) 2 k 3x 3+( ) k 3 x 1+( ) 1+( )( ) … k 3 2x 1–( ) 1+( ) 2 k 6x 1–( )+ + + + + + +( )

2 2 k2x xk+( )
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

2xk 2 2x 2 k⋅ ⋅+
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

x k, ∞→
lim=

1
2x
------ 3x 1+( ) 3 x 1+( ) 1+( ) … 3 2x 1–( ) 1+( )+ + +

x
----------------------------------------------------------------------------------------------------------------------⋅

x ∞→
lim=

x 3x 1+( ) 3 1 2 … x 1–( )+ + +( )+
2x2

--------------------------------------------------------------------------------------
x ∞→
lim

3 3
2
---+

2
------------ 9

4
---.= = =

ν ρ⋅ a ρ⋅
κ ρ⋅

n 2≥
ν ρ⋅ n 1–≤

n 3≥ G�Kn D 2≥
D 1 n 2–( ) ν⁄+≤

ρ ν n 1– ν–( ) D⋅+
n 1–

--------------------------------------------.≤

ν ρ⋅ ν ν n 1– ν–( ) D⋅+
n 1–

--------------------------------------------⋅≤ ν2
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Thus the result follows. �

Corollary 13: Let G be a connected graph on  vertices with algebraic connectivity a
and remoteness ρ. If , then . If , then ,
with equality if and only if , where M is a matching.

Proof: It is obvious that if G is Kn, then .

Suppose that . Then, as seen in the proof of Theorem 12, in this case we have

with equality if and only if  (and then, from Lemma 2, ), that is, , where M
is a matching. �

Conjecture 14: Let G be a connected graph on  vertices with edge connectivity κ and
remoteness ρ. Then  with equality if and only if G is the complete graph Kn.

�

This conjecture is not true. To provide a counter-example we use the same notation as in disproving Conjec-
ture 4. Consider the following graph.

where k is a perfect square and there are 6x summands. Note that . To disprove the conjecture,
it suffices to prove that

Let t denote this double limit, then

Therefore Conjecture 14 is refuted.
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Abstract
The software system KBGRAPH, which supports graph theoretical proofs and the analysis of graph
classes, is presented by developing partial proofs for two graph coloring problems. It is shown that
Reed’s Conjecture, which concerns an upper bound on the chromatic number, holds for some special
classes of graphs; future approaches are briefly outlined. Another strengthening of Brooks’ well-
known upper bound is sketched. Details about the internal derivation strategies of the program and
tools offered to the users are presented, as far as needed for an understanding of the subsequent sketch
of a problem solving process. This article is written for a two-fold readership: readers who want a
quick overview of the knowledge based system will find this in sections 1 – 4; for readers interested
in more details of the software system, additional hints on its implementation, technical data, and the
availability of the program are compiled in the last section.

1. A First Look at Open Problems

The knowledge-based system KBGRAPH is destined to support graph theoretical proofs and the analysis of
graph classes. Instead of a boring sequence, describing one function of the program after the other, we want
to let the reader participate in a step-by-step search for subsequent improvements, aiming at a proof of Reed’s
Conjecture. To date only partial proofs have been found. Typically, in the course of such a stepwise search,
new relations between graph invariants are discovered, that are valid for all graphs and hence of independent
interest.

Reed’s Conjecture is an extension of a well-known upper bound on the chromatic number, , [1].

Conjecture (Reed): For any graph G, 

(1) ,

where  denotes the maximum degree and  is the clique number of G. �

The chromatic number χ is a graph invariant that is connected with a great variety of other invariants, such
that sharper bounds for χ may lead to an improved knowledge about other variables.

The following sketch shows how structural knowledge on the one hand, and inequalities stored within the
knowledge based system, on the other hand, can be used to proceed toward partial proofs. The system
KBGRAPH will frequently be “in the background”. In any case, the following text is written such that no prior
knowledge about the KBGRAPH system (nor of other such systems) is needed. Therefore, only a necessary
short overview is given in the beginning (Section 3). Additional details for interested readers are placed in a
separate section (Section 5).
1 This paper is a revised and extended version of an article that appeared in MATCH Commun. Math. Comput. Chem., 58,
445–480 (2007), with kind permission.

χ G( )

χ G( ) Δ G( ) ω G( ) 1+ +
2

----------------------------------------≤

Δ G( ) ω G( )
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As a by-product, new inequalities, partially connected with Reed’s Conjecture, are listed separately (Section
4.5); in particular, sufficient conditions for a strengthening of Brooks’ inequality such that  is replaced
by .

2. Notation

In this paper, graph coloring refers to coloring the vertices of graphs. All graphs considered are simple (finite,
undirected, with no loop or multiple edge). As usual, G is a graph with p vertices and q edges, and  is the
complement of G. Special graph classes are the complete graphs Km, the cycle graphs Cm, and the claw K1,3.
Frequently occurring variables are the minimum degree δ and the maximum degree Δ, the clique number ω
(that is, the number of vertices of the greatest clique), the independence number β0, and the vertex-cover num-
ber α0, the vertex connectivity κ, and the edge connectivity κ1. We also write χ instead of , and so forth
if this does not result in ambiguity.

3. Overview of the System KBGRAPH

The knowledge-based system KBGRAPH has two objectives:

• to analyze given classes of graphs, and
• to support proofs of graph theoretical hypotheses.

At present, the knowledge base consists of about 1,700 entries. Each such entry has the form of a known prop-
erty of a graph invariant (e.g., ) or of a relation between graph invariants, which may be unconditional
(e.g., ) or conditional (if…, then…). Integer, real, and Boolean variables are permitted, as well as logical
connectives (and, or, not). Each entry (except for some trivial cases) is equipped with a reference.

About 50 graph invariants are implemented, including all of the invariants mentioned in this paper. Material
on other variables has been accumulated in the paper form, but not yet entered into the knowledge base.

A problem description consists of a finite list of user-defined restrictions. These have the same form as the
knowledge-base entries: conditional or unconditional equations or inequalities; in practice, unconditional
statements are more frequent. Any property of the considered class of graphs that is already known can be
entered here as a user-defined restriction (see the example in Section 4.2). In those cases where an attempt of
a mathematical proof is made, a problem description lists known properties of a hypothetical counterexample.

At the onset of the evaluation process, just after reading the user defined restrictions, an internal duplicate of
the knowledge base is generated, and this is confronted with the user defined restrictions. The main evaluation
process works in the usual mathematical style (forward chaining): known numerical and Boolean values are
inserted, and the formulæ are simplified. In this way, the temporary duplicate of the knowledge base is per-
manently updated. As soon as the if part of a conditional statement is found to be true, this if part is deleted
and the then part remains as an unconditional statement. If a then part turns out to be false, the negation of the
if part is retained as a true statement. Transitivity of equality and of inequality relations is taken into account
(e.g.,  and  implies ). A special table is set up and permanently updated; this stores the
currently best known numerical values for the lower and upper bounds of the numerical variables.

Within the general framework of forward chaining, a selection of specific techniques applied within the infer-
ence process can be sketched here:

• rounding in the case of integer variables: For example,  is replaced by ;

• deletion of formulæ that are inferior to other entries in the set of transformed formulæ;

• conclusions derived from the monotonicity of arithmetic functions: If, for example,
 is a monotonically increasing function for  ( ), then it can be

derived that . (Monotonicity of a function can be recognized for linear or qua-
dratic expressions and for functions of the type .)

Additional special methods of evaluation are described in Section 5.

When an inference run has ended, then generally concrete values for some variables have been identified, and
improved bounds to some numerical variables have been obtained. These values and bounds are displayed to
the user. Another part of the intermediate results consists of those knowledge-base entries that were altered by
the evaluation runs. These formulæ can optionally be displayed on a screen, either completely or in a selective

χ Δ≤
χ Δ 1–≤

G

χ G( )

ω 2≥
χ ω≥

κ κ1≤ κ1 δ≤ κ δ≤

χ 9 2⁄< χ 4≤

y f x( )= a x b≤ ≤ a b<
f a( ) f b( )<

y clog x( ) d+=
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manner by use of a retrieval function. After any evaluation run, the user may enter further knowledge—
possibly triggered by studying the recent results—and restart the evaluation. This may be repeated recursively
as long as an improvement is found by the system.

If, in the case of an attempted proof, a contradiction is found, this means that the underlying class of graphs—
that is, the class of hypothetical counterexamples—is empty, or, equivalently, that the hypothesis has been
proved. This is signalled to the user, together with data about the formulæ that led to that contradiction.

KBGRAPH is consequently organized for interactive working. After the end of an evaluation run the user has
the chance to:

• enter additional knowledge in the same style as the initial user defined restrictions;

• edit a single formula (e.g., to simplify an arithmetic expression by hand);

• enter the knowledge that some if part is true or some then part is false;

• tentatively insert numerical values for a numerical variable (in the case of a contradiction
it is possible to increase a lower or to reduce an upper bound).

For each result, a derivation tree can be displayed, which shows how the result has been derived. The formula
numbers lead to references from which formulæ of the original knowledge base were taken.

Some advanced evaluation techniques are also implemented; for example, working with case distinctions.
For Boolean variables, the two alternatives can analyzed separately (e.g., regular/not regular); in the case of
a numerical variable, the domain is decomposed into partial intervals (see an example in Section 4.2). There
may be an identical improvement for the various cases that were detected in quite distinct methods of deriva-
tion. (For additional advanced evaluation techniques see Sections 4.2 and 5.2.)

A characteristic phenomenon appearing in evaluation processes can be dubbed knowledge propagation:
improved knowledge about one variable is likely to advance the knowledge about other variables. Inspection
of the ways in which surprising results come up suggests the term crossword-puzzle phenomenon. When a
crossword puzzle is solved, a single new finding can trigger a chain reaction of additional new findings, such
that finally entries for distant places will be found. Hence, any increase in a lower or decrease in an upper
bound can be considered a chance for more progress. Furthermore, conditional formulas are activated as soon
as a bound in a condition is reached.

The system supplies improved knowledge about the class of graphs considered. In particular, exact values for
some graph invariants, sharper bounds for most other variables, and restrictions in the form of equations or
inequalities to be fulfilled by graph invariants. If no proof is derived (which is the regular case for long-stand-
ing graph theoretical conjectures), then the new knowledge about properties of a counterexample may sim-
plify the remaining task.

4. Reed’s Conjecture

4.1. Problem Statement

Brooks [1] proved that for all connected graphs the inequality

(2)

holds, with equality if and only if G is a complete graph or an odd cycle (here only the case of connected
graphs with  is of interest). This was strengthened by Reed [2][3], whose conjecture is stated above as
(1). Neither a proof nor a counterexample are known. This conjecture is trivial for  and for

. Reed [2] gave a proof for graphs with maximum degree . A proof for all line graphs
was presented at a conference in Berlin (June 2005, [4]); this proof stood in the context of a harder claim on
multiedge graphs. A quick proof for line graphs—restricted to simple graphs—is obtained below as a by-
product (Section 4.2, step 2). Contributions in two recent papers [5][6] are compiled below (Section 4.3).

4.2. A First Attempt with Reed’s Conjecture

Unless otherwise stated, G denotes a counterexample to Reed’s Conjecture. It is our goal to find additional
and sharper constraints that the class of counterexamples need to fulfil.

Step 1: We can restrict our study to color critical graphs with chromatic number χ (χ-critical graphs). Every
graph with chromatic number χ contains a χ-critical subgraph with the same number of vertices. If such a

χ Δ 1+≤

χ Δ≤
ω Δ=

ω Δ 1+= Δ p 1–=
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graph obeys (1), then in any other graph generated from it by inserting edges, Δ and ω remain constant
or increase, such that (1) continues to remain valid. Thus, we can make use of the known properties of color
critical graphs. (The property color critical cannot be found automatically, but it is implemented in the system
as a Boolean variable and is used if stated by the user.)

Step 2: By inserting  and  into (1), it turns out that (1) is fulfilled for these values. Hence,
G must satisfy the constraint

(3) .

Some consequences of this property are stored in the system. Furthermore, it is known [7] that graphs obeying
(3) must contain K1,3 and/or K5–e as an induced subgraph. These graphs are forbidden induced subgraphs for
line graphs, and so it is quickly proved that (1) holds for line graphs.

Here, the restriction (3) was found by the user. In principle, it would be possible to start a program run without
entering (3) as a user defined restriction—the program would be able to exclude  and  in
later phases. However, by doing so, the program run would be longer, and the intended demonstration would
be rather clumsy. Furthermore, it should also be shown that the user’s additional prior knowledge can be
entered here.

Step 3: Next we check if  or  is possible. Since counterexamples are studied we have

or equivalently

 and ,

with  if  is even and  if  is odd. The case  must be excluded since here
. Only the case  remains. Then , and  implies  (mod 2),  (mod 2),

 (mod 2), , contrary to . Hence,  is excluded, and with (3) we obtain

(4) .

This derivation cannot be accomplished by the system.

Step 4: As a next step we can compile the user defined restrictions:

R1:

R2:
R3: color critical
R4: .

Here R1 is the negation of (1) since we are looking for a counterexample. R2 is a consequence of Reed’s addi-
tional restriction as cited above. R3 was explained previously (Step 1), and R4 goes back to Step 3.

Step 5: With these user defined restrictions, a first evaluation run is started. Among the results only two
points are worth reporting: A counterexample G is not completely multipartite, and it has . The latter
finding is mainly due to a theorem by Nenov [8]: here, , and for  and  it follows that ;
for  with  the derivation is different.

Step 6: After the end of the first standard evaluation run, the special evaluation technique working with case
distinctions is activated. We consider the complete case distinction {ω = 2, 3, 4, ≥ 5}, which means that the
program will consecutively (but independently) handle the four cases:

, , , and .

A selection of the results obtained is provided in the following table:

ω = 2 = 3 = 4 ≥ 5
p ≥ 22 12 13 15

q ≥ 47 34 43 58

χ ≥ 5 6 7 8

γ ≥ 2 1 2 2

ω χ= ω χ 1–=

χ ω 2+≥

ω χ= ω χ 1–=

χ ω 2+= χ ω 2–=

χ Δ ω 1+ +( ) 2⁄>

χ Δ ω 1 ε+ + +( ) 2⁄( ),> χ Δ 1– ε+>

ε 1= Δ ω+ ε 0= Δ ω+ ε 1=
χ Δ≤ ε 0= χ Δ= χ ω 2+= χ ω≡ Δ ω≡
Δ ω 0≡+ ε 1= ε 0= χ ω 2+=

χ ω 3+≥

χ Δ ω 1+ +( ) 2⁄>
Δ p 2–≤

χ ω 3+≥

p 11≥
χ 5≥ ω 3≤ p 10≤ χ 4≤

ω 4≥ χ 7≥

ω 2= ω 3= ω 4= ω 5≥
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where γ is the orientable genus. First, note a little improvement from  to . The lower bound
 for  can be traced back to a result by Jensen and Royle [9]: a graph with  and 

has  (this lower bound also holds for ).For the lower bounds to q, there are quite a lot of inequal-
ities in the knowledge base, some of which also use parameters like ω and Δ; one of the most efficient lower
bounds for q in the case of color critical graphs was found by Kostochka et al. ([10], see Section 4.5, nr. 2).
The lower bounds for χ follow from (4).

In three of the four cases we have . Before we proceed to the case with , we study the functioning
of the program module working with case distinctions. The same result, , was derived in three different
ways for the three cases (at the same time, it was noticed here that after a program run the derivation of each
result was displayed). In this particular case, we could identify the underlying knowledge-base entries:

Case 1: 

If  and , then . [11]

Case 3: 

If  and , then . [12]

Case 4: 

If , then . [11]

Step 7: In view of the preliminary lower bounds for γ, the user may decide to handle the troublemaker—
Case 2, with —separately. To this purpose, a new program run was started for Case 2 with the hypoth-
esis  as a new user defined restriction. This program run used all known results for this case and all
restrictions defined previously, in particular,  and . Mainly on the basis of a formula by Dirac
[13], the program supplies , such that G would be regular. However, according to Gould
([14], p. 247), a color critical graph with  and  cannot be regular. This contradiction, which is dis-
played to the user, excludes , and so  has been proved for this case.

To illustrate the flexibility of the system, we show an alternative proof for  in Case 2: A semi-automatic,
computer-assisted proof, which starts from the known facts  and . The retrieval function is acti-
vated and as a response to the query “χ and γ”, about 20 formulæ containing χ and γ are displayed on the
screen. Stimulated by a formula due to Thomassen [12], the user can look up the original printed version.
According to this source, most of the graphs with  have , and hence can be ignored here. Two
exceptional graphs have , contrary to . For the third of Thomassen’s exceptional cases, one can
combine the fact that here  with findings by Albertson and Hutchinson [15] resulting in the conse-
quence that this last exceptional graph can also be omitted. Thus, we derive that G has , or, in other
words, that (1) holds for planar graphs and for toroidal graphs.

4.3. Contributions from the Theory of Graph Associations

The following inequalities, valid for all graphs, are taken from two recent papers [5][6]. Using the concept of
graph associations, a theorem is found that permits us to derive new bounds for χ by choosing special types
of induced subgraphs.

Definition: Given a graph G and non-adjacent vertices a and b, we write  for the
graph obtained from G by associating (i.e., identifying) a and b into a single vertex 
and discarding any multiple edges. �

Theorem 1: Let G be a graph. Then, for any induced subgraph H of G

(5) �

There are two immediate applications. If G is connected and if the subgraph H is identified with a longest
induced path Pm of G ( , such that the diameter , then (5) leads to

(6) .

Next, suppose that G has  (where the girth g is the length of a shortest cycle) and take for H a subgraph
induced by a shortest cycle together with its neighborhood, then

p 11≥ p 12≥
p 22≥ ω 2= ω 2= χ 5=

p 22≥ χ 6≥

γ 2≥ γ 1≥
γ 2≥

ω 2=

γ 1≤ ω 2= χ 4≤

ω 4=

χ 7≥ ω 6≤ γ 2≥

ω 5≥
γ 1≤ χ 7≤

γ 1≥
γ 1=

ω 3= χ 6≥
χ δ Δ 6= = =

δ 3≥ δ χ=
γ 1= γ 2≥

γ 2≥
ω 3= χ 6≥

γ 1= χ 5≤
ω 4≥ ω 3=

p 12≥
γ 2≥

G/ a b,[ ]
a b,[ ]

χ G( ) χ H( ) p G( ) ω G( ) p H( )– 1–+
2

---------------------------------------------------------.+≤

m 3≥ d Pm( ) d G( ) m 1– 2≥= =

χ G( ) p G( ) ω G( ) d G( )– 2+ +
2

---------------------------------------------------------≤

g 5≥
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(7) .

Theorem 2: Let G be a graph. Then

(8) ,

or equivalently (with Gallai’s relation )

(9) �

For triangle-free graphs it follows that

(10)

The following three inequalities are related to Reed’s Conjecture. It was found that (1) holds for decompos-
able graphs; that is, for graphs G with a disconnected complement , such that G can be written as a direct
sum  (where  means that each vertex of A is adjacent to each vertex of B). If G is a
counterexample to (1), then  has a perfect matching if p is even. For odd p,  is nearly matching-covered;
that is,  has a perfect matching for any vertex v (see also [16]). Furthermore,  is bridgeless; that is,

.

Any counterexample to (1) must satisfy the inequalities

(11) ,

(12) ,

(13) .

4.4. Example of an Advanced Evaluation Technique

As remarked previously, a proof for Reed’s Conjecture has not yet been found. By experimenting with the
program (and material from literature) we suggest that there are two graph classes for which a solution may
be relatively easy: Triangle free graphs and claw free graphs. The following account is to show—based on an
example—one of the advanced features of the program that the user can apply following a usual inference run.

Triangle free graphs are characterized by . Following an ordinary program run (for counterexamples
to Reed’s Conjecture), then including the new constraint , a run with a case distinction (cf. Section 4.2,
Step 6) was used. The case distinction  led to the result that  for  and  for

. This suggests a test of whether  could be proved for  also. The output of a new program
run with the constraints  and  consists of fixed values for nine numerical variables (e.g.,

), whereas for all other numerical variables both lower and upper bounds are supplied.

Consequently, this is an ideal candidate for a program function called automatic insertion: For each integer
variable that is constrained from both sides, all admissible values are inserted into the formulæ of the knowl-
edge base and a contradiction close to a bound leads to an increase of a lower bound or a decrease of an upper
bound (an extension to intervals bounded at one side and to real variables can only be mentioned here, see also
Section 5.2). In the concrete case, for example, the interval  was replaced by , and

 was converted into . In a similar way, inclusions for most of the other integer vari-
ables were strengthened.

Other advanced techniques of evaluation were also applied to Reed’s Conjecture, but in this special case they
did not lead to significant progress. Therefore, these techniques are handled in a general form in Section 5.2;
a summary of partial results follows in Section 4.6.

4.5. Miscellaneous Inequalities

Related inequalities, vastly scattered in literature, should be registered here (with a short derivation or refer-
ence). The following formulæ (in nr. 1–3) were found by the retrieval function of KBGRAPH with the query

χ G( ) p G( ) g G( ) δ G( ) 1–( )– 7+
2

----------------------------------------------------------------≤

χ G( )
p G( ) ω G( ) β0 G( )– 1+ +

2
------------------------------------------------------------≤

α0 β0+ p=

χ G( )
ω G( ) α0 G( ) 1+ +

2
-------------------------------------------.≤

χ G( ) p G( ) Δ G( )– 3+
2

---------------------------------------.≤

G
G A B+= A B+

G G
G v– G

κ1 G( ) 2≥

χ G( ) p G( )
2

-----------≤

Δ G( ) p G( ) p G( ) 2β0 G( ) 1+ +–≤

β0 G( ) 3≥

ω 2=
ω 2=

g 4= g 5≥,{ } γ 2≥ g 4= γ 3≥
g 5≥ γ 3≥ g 4=

g 4= γ 2=
χ Δ 5= =

22 p 86≤ ≤ 22 p 56≤ ≤
47 q 176≤ ≤ 47 q 116≤ ≤
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“χ and Δ”. Some of them have immediate consequences for Reed’s Conjecture. (The references are supplied
by the system; a selection and some editing for the sake of easy reading were required.)

1. Brooks’ well-known result, that all connected graphs (except for complete graphs and odd cycles) satisfy
, suggests to ask for conditions under which the stronger property

(14)

will hold. Some of the sufficient conditions are:

(a) If , then . [17]
→  and  implies (14).

(b) If , then . [18]

→  and  implies (14).

(c) If  and , then . [18]

(d) If  and  then .
If  and  and , then . [19]

(e) If G has no C4 (induced subgraph or not), then . [20]
→ If G has no C4, then  implies (14).

(f) If G is color critical and  with a cutset ,
then u and v are non-adjacent, and . [14] (p. 227)
→ Under these conditions  implies (14).

(g) The Borodin–Kostochka Conjecture [18] claims:
If  and , then .

Partial proofs were compiled in [3]. Recently this conjecture was proved for graphs con-
taining a doubly critical edge; that is, an edge whose removal decreases χ by 2 [21].

2. For color critical graphs, given χ and p, a good lower bound for q is required. At present, the best such
bound is supplied by [10], under the reservation that two classes of exceptional graphs are excluded. This
restriction can be by expressed by the three or-connected properties:

If G is color critical and  and (  or  or ), 
then .

3. If G contains neither C4 nor 2K2 as induced subgraphs, then  and 
[22]. Thus, due to (3), (1) also holds for this special class of graphs.

4. Every counterexample to (1) has , where  is the clique-to-vertex covering num-
ber. From [23] (Theorems 1 and 2) it follows that for all graphs

 implies ,

 implies .

From (3) we have , and in both cases  follows. For the case  and  a structure the-
orem by Dirac [24] can be used: Such a graph contains two vertices with  paths between them, where
no two of these paths have an edge in common. Hence, a χ-critical graph ( ) cannot be covered by less
than five cliques, with the order of these cliques bounded by . Here, at least five cliques are needed for
a covering and the claim is proved.

5. As is shown above, Reed’s Conjecture holds for all line graphs. This can be extended to a broader class of
graphs. Line graphs have  (where λp is the smallest adjacency eigenvalue) and there are exactly two
classes of connected graphs sharing this property:

• generalized line graphs

• exceptional graphs.

For a definition of a generalized line graph, see for example [25][26]. Their relevant properties can best be
found through a structural characterization given by Cvetkovic [25] (Theorem 2.2). A generalized cocktail
party graph is a graph isomorphic with a clique with independent edges removed. The complement of a gen-
eralized cocktail party graph consists of isolated edges and vertices and so a generalized cocktail party graph

χ Δ≤

χ Δ 1–≤

ω 2= χ 2 Δ 2+( ) 3⁄ 1+≤
ω 2= Δ 8≥

ω 3≤ χ 3 Δ 2+( ) 4⁄≤
ω 3≤ Δ 7≥

Δ 7≥ ω Δ 1–( ) 2⁄≤ χ Δ 1–≤
χ ω 1+≥ Δ p 1+( ) 2⁄> χ Δ 1–≤
χ ω 1+≥ Δ 9≥ Δ p 2⁄> χ Δ 1–≤

χ 2Δ 3⁄ 2+≤
Δ 7≥
κ 2= u v,{ }

Δ 3χ 5–( ) 2⁄≥
Δ 6≥

Δ 9≥ ω Δ 1–≤ χ Δ 1–≤

4 χ p 2–≤ ≤ 2χ p 1+≠ β0 3≥ ω p 1–( ) 2⁄<
q p χ 1–( ) 2⁄ χ 3–+≥

χ G( ) χ G( )+ p G( )≥ χ G( ) ω G( ) 1+≤

Θ0 G( ) 5≥ Θ0 G( ) χ G( )=

ω 2= Θ0 χ≥
ω 3= Θ0 χ 1–≥

χ ω 3+≥ Θ0 5≥ ω 4≥ χ 7≥
χ 1–
χ 7≥

χ 3–

λp 2–≥
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H has . If G is a generalized line graph then its edges can be partitioned into generalized cock-
tail party graphs such that

Each vertex is in at most two generalized cocktail party graphs, and
two generalized cocktail party graphs have at most one common vertex.

Therefore, generalized line graphs do not obey (4), and can be dropped here. Exceptional graphs are defined
as connected graphs with  that are neither line graphs nor generalized line graphs. With the explicit
restriction to  we find that there are 573 such graphs; they have at most 8 vertices [26] and, hence, can
be ignored here. A counterexample to Reed’s Conjecture has . (The case of equality cannot be
attacked with the present tools.)

4.6. Summary of Partial Results

Reed’s Conjecture was proved for the following classes of graphs:

• Line graphs, generalized line graphs, and those exceptional graphs with .

• Graphs with .

• Planar and toroidal graphs.

• Decomposable graphs.

• -free graphs.

In any counterexample, variables have to satisfy the following lower bounds (a small selection): ,
, , , , , , , , and . Necessary structural properties

of the complement  are compiled in Section 4.3; bounds on its invariants include: , , and
.

5. Additional Details about the System KBGRAPH

5.1. Starting Point and General Properties

The project KBGRAPH was started in 1985, stimulated by the appearance of a series of papers by Brigham
and Dutton [27]–[30]. Their two compilations of relations between graph invariants [29][30] with overall 458
entries remain unparalleled; they formed the core of the knowledge base in the first version of KBGRAPH.
The system has been independently developed further. Whereas forward chaining (see Section 3) has been
maintained as the central evaluation strategy, KBGRAPH is now characterized by a quantitative increase
(number of graph invariants and size of the knowledge bases) and by a series of novel features, mainly related
to

• the user interface and the options for flexible post-processing,

• the advanced evaluation techniques (Section 5.2),

• the options for an external control of the inference process (Section 5.3).

At present, 51 graph invariants are implemented. The three knowledge bases include about 2,100 entries:
About 1,700 in the main knowledge base and the rest in two auxiliary knowledge bases required for one of the
special evaluation techniques (Section 5.2). According to individual requirements, graph invariants can be
newly defined, cancelled, or renamed. The knowledge-base is permanently updated: Adding, deleting, or
altering of entries is possible. From time to time a single entry is replaced by a stronger version.

Based upon forward chaining as the central inference method, the inference mechanism was programmed ad
hoc, to adapt to the specific requirements of working with formulæ (no foreign software was used). Options
for an external control of the inference are outlined in Section 5.3.

After the end of an inference run, the user can enter additional knowledge and start the inference process
again, or apply one or the other of the advanced evaluation techniques (Section 5.2). This can be done repeat-
edly for as long as some progress is expected. After the end of each inference run, it is possible to display a
derivation tree for each single result, and, in the case where more than one derivation method led to the same
result, this fact is also disclosed to the user. Thus all findings can be checked and rewritten in the usual math-
ematical style.

χ H( ) ω H( )=

λp 2–≥
λp 2–>

λp 2–≤

λp 2–>

χ ω 2+≤

C4 2K2,{ }

p 12≥
q 34≥ χ 5≥ δ 4≥ Δ 5≥ β0 3≥ α0 8≥ γ 2≥ Θ0 5≥ λp 2–≤

G ω G( ) 3≥ χ G( ) 5≥
Θ0 G( ) 5≥
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5.2. Advanced Evaluation Techniques

Following an ordinary program run, the user may decide to use one of the following special techniques, all of
which are optional:

• Working with case distinctions.

• Automatic insertion of values.

• Editing of a formula.

• Transition to a related graph.

Working With Case Distinctions: was already explained and illustrated in Section 4.2 (see Step 6). The
user is free to define a decomposition of the domain of a variable (up to nine segments). No closed interval
is required—a decomposition can have forms such as ω = {2, 3, ≥ 4} or { , }. The decompo-
sition into sub-classes, sub-sub-classes, …, is supported by the system up to four hierarchy levels; within the
same hierarchy level up to nine descendants of the same direct ancestor are permitted. If the same improve-
ment is achieved for all subcases of the same case, then this new knowledge can be reached upward to the
next common ancestor. The idea behind this—supported by experience—is the chance that the same improve-
ment can be derived in different ways within the different subcases. Optionally, the system can make propos-
als for plausible case distinctions.

Automatic Insertion of Values: was exemplified in Section 4.4. It should be supplemented here that no
closed interval is required. If an integer variable is bounded only from one side, then the tentative insertion of
numerical values starts at that bound, and continues for as long as the formula just considered leads to a con-
tradiction and thus makes it possible to narrow that bound. For the case of very large intervals and/or real vari-
ables, heuristic procedures exist that supply preliminary data to the user, who has to decide whether a
proposed problem reduction seems plausible.

Editing: is possible for each of the formulæ that were transformed by an inference run. The user can

• simplify an arithmetic expression by hand,

• insert numerical or Boolean values for a variable,

• delete an if part if it is considered true,

• replace a then part by false,

• delete a formula (e.g., if it is recognized that an if part cannot be satisfied, or that an ine-
quality is inferior to another one—the latter point is supported by the system).

Transition to a Related Graph: Some successful proofs in graph theory show that a transition from the
given class of graphs to another class—called related graphs in short—may be advantageous. Such a transi-
tion can be defined by any unique unary graph transformation. There are formulæ that connect variables of the
original graphs with variables of the related graphs—an example is provided by the transition to a comple-
mentary graph using theorems of the Nordhaus–Gaddum type or formulæ like . After an ordi-
nary inference run that yields new information on the original class of graphs, the user may switch over to a
class of related graphs in order to start an inference process with respect to that second class. Then the new
knowledge about the second class of graphs can be automatically transferred back to the original class of
graph. Transitions to complementary graphs and to line graphs are implemented in the system. The required
interconnection knowledge bases exist; these are the two auxiliary knowledge bases mentioned previously.
The user is free to define additional types of derived graphs; in this case, of course, a corresponding intercon-
nection knowledge base must be set up.

5.3. Options for External Control of the Inference Process

The essential options for an external influence on the inference process are:

• Masking.

• Ranking the variables.

• Working with or without a derivation tree.

• Partitioning the knowledge base.

Masking: Each graph invariant can be masked; that is, it will be treated as inexistent during the same session.
This tool is mainly used if the user is sure that a certain variable will not contribute to the solution. Also, each

3 Δ 6≤ ≤ Δ 7≥

ω G( ) β0 G( )=
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single statement can be masked; thus, for example, it is possible to make an inference run with or without use
of the four-color theorem.

Ranking of the Variables: A ranking, that is, a linear order, of all graph invariants is defined. In the case
where an equality between two numerical variables is derived in the inference process, this ranking deter-
mines whether x will be substituted for y or vice versa. The ranking also has an influence on the order within
output lists. The user can alter the ranking individually and store the new ranking for future use.

Working With or Without a Derivation Tree: The user can decide whether or not a derivation tree is to be
built up during an inference run. The derivation tree is required if the user later wants to obtain information
about the way a certain result has been derived. Working without the derivation tree will reduce the program
runtime.

Partitioning the Knowledge Base: In view of the extended knowledge bases, strategies can be recom-
mended to speed up the inference process. The main knowledge base is partitioned in the following way. Each
of its entries is assigned to one of three subsets whose members may be named very important, important, or
less important. At the outset, only the very important class statements are used; in later inference runs those
in the important class are included, until finally all entries in the knowledge base are active. In this way, some
useful intermediate results can be achieved in earlier inference runs, with the consequence that many expres-
sions can be simplified rather soon. Four different strategies for a partitioning of the knowledge base were
empirically tested. It was found that in most cases this technique leads to a considerable reduction in comput-
ing time. The user may choose among these four strategies—in any case, one of them is predefined as a stan-
dard (according to the empirical results). For details consult the paper [31].

5.4. Technical Details, References, Availability

Implementation of the system started in 1985 and continued until 2000. Since 2000, no further revision of the
program was possible, but the knowledge bases are permanently updated. Due to side conditions about the
year 1985 (students’ knowledge and equipment, also administrative rules), the system was programmed in
PASCAL (in the final stage about 30,000 lines of code) and on the basis of MS-DOS; the menus are in Ger-
man. A transfer to modern computers is possible, and has already been successfully performed.

Additional information, for example, about examples of application, criteria for the selection of graph invari-
ants and formulæ, parameter dependence of required computer runtime, and strategies to speed up computer
runs with large knowledge bases, can be found in two papers [32][33] that contain many references. The exe-
cutable program is freely available (email: <t4141ax@mail.lrz-muenchen.de>), as well as the published and
unpublished expertise acquired in many years of practical work with the system.

6. Recent Little Steps and a Short Outlook

Small improvements that were found after finishing the main part of this paper are reported here without
proof. Every counterexample to Reed’s Conjecture must fulfil: , , , and .

Future research on Reed’s Conjecture may start from the abundant literature on color critical graphs, of which
only a small proportion has been used to date. Another promising approach could be based on the comple-
ments of possible counterexamples—some structural properties of these complementary graphs are compiled
here.

Practical use of the system KBGRAPH continues. The knowledge bases are permanently updated; but never-
theless the system should be reprogrammed totally from the beginning, free from restrictions imposed by ear-
lier hardware, based upon a modern programming language and operating system, and exploiting the
expertise accumulated over the years with respect to design, updating, and practical work.
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Abstract
Let  be a simple graph with p vertices and q edges. Let each edge  of G be
weighted  Define the edge degree weighted sum of G to be the sum of the
edge weights of G, . In this paper we investigate properties of  and
determine its value for various graphs.

Let  be a simple graph with p vertices and q edges.

Definition 1: Let each edge  in E be weighted with the sum of the degrees at
each endvertex so that  is its weight. The edge weighted degree
sum of G is defined to be the sum of the edge weights of G and is denoted by

. (Note: if G is an empty graph, we define .) �

We use the notation Pp, Wp, Kp, and Cp to denote, respectively, the path graph, wheel, complete graph, and
cycle graph with p vertices;  the star graph with  vertices, and  the complete bipartite graph
with  vertices (see [1]).

Theorem 1: 

(1) If  ( ), then ;  for each non-pendant edge e in E,
and  for each of the two pendant edges.

(2) If  ( ), then ;  for each inner edge e
in E, and  for each outer edge e in E.

(3) If  ( ), then ;  for each edge e in E.

(4) If , then ;  for each edge e in E. 

Proof: Follows directly from the definition. �

Theorem 2: If , then .

Proof: Each vertex v in V contributes  to the weights of  edges and thus contributes 
to . �

Corollary 2.1: For any graph , then  is even.

Proof: Since for any graph the number of vertices of odd degree is even, then  is
also even. �

Corollary 2.2: The number of edges with odd weight is even. �

Corollary 2.3: If G is regular of degree r, then  and  for each edge
e in E. 

Proof: Each edge in E is assigned the same value  since each incident vertex has the same degree.
Since each vertex has degree r, it follows from Theorem 2 that . �

G V E,( )= e uv=
w e( ) deg u( ) deg v( ).+=

w G( ) w e( )
e E G( )∈∑= w G( )

G V E,( )=

e uv=
w e( ) deg u( ) deg v( )+=

w G( ) w e( )
e E∈∑= w G( ) 0=

K1 p, p 1+ Km n,
m n+

G Pp≅ p 1> w G( ) 4 p 6–= w e( ) 4=
w e( ) 3=

G W p≅ p 3> w G( ) p p 7+( ) 8–= w e( ) p 2+=
w e( ) 6=

G K1 p,≅ p 0> w G( ) p p 1+( )= w e( ) p 1+=

G Km n,≅ w G( ) mn m n+( )= w e( ) m n+=

G V E,( )= w G( ) deg v( )( )2
v V∈∑=

deg v( ) deg v( ) deg v( )( )2

w G( )

G V E,( )= w G( )

w G( ) deg v( )( )2
v V∈∑=

w G( ) pr2= w e( ) 2r=

w e( ) 2r=
w G( ) pr2=
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Corollary 2.4: 

(1) If  ( ), then  and  for each edge e.

(2) If  ( ), then  and  for each edge e.

(3) If  ( ) is the empty graph with p vertices, then . �

Corollary 2.5: For all graphs G with p vertices, .
 if and only if . �

Theorem 3: 

(1) , when .

(2) , when . �

Corollary 3.1: 

(1.1) .

(1.2) If e connects the pendant vertices of Pp, then

(2.1) .

(2.2)

�

Theorem 4: 

(1) Given an even number , there exists a graph G such that .

(2) Given an even number , there exists a connected graph G such that  
if and only if x is neither 4 nor 8.

Proof: 

(1) If , let , else let G be a union of  disjoint edges on  vertices.

(2) If , let . If , then let . If , then there is no connected graph since there
must be at least two adjacent edges that would add at least 6 to . If , then let . If ,
then there is no connected graph since there must be at least three edges that would form a path P4 or a K1,3
and this would add at least 10 to . If , then let G be an apposite path graph or cycle. �

Reference 

[1] F. Harary; Graph Theory, Addison-Wesley, Reading (1969).

Received: August 9, 2007
Revised: February 13, 2008

Accepted 08/06/10 Typeset 08/06/09 Corrected 08/12/16. Paper 2p ms = 5p(0f 0t)

G K p≅ p 0> w G( ) p p 1–( )2= w e( ) 2 p 1–( )=

G C p≅ p 2> w G( ) 4 p= w e( ) 4=

G K p≅ p 0> w G( ) 0=

max w G( ){ } p p 1–( )2=
w G( ) p p 1–( )2= G K p≅

w G e+( ) w G( ) 2 deg u( ) deg v( ) 1+ +( )+= e E G( )∉
w G e–( ) w G( ) 2 deg u( ) deg v( ) 1–+( )–= e E G( )∈

w C p e+( ) w C p( ) 2 2 2 1+ +( )+ 4 p 10+= =

w Pp e+( ) w Pp( ) 2 1 1 1+ +( )+ 4 p 6– 6+ w C p( )= = =

w C p e–( ) w C p( ) 2 2 2 1–+( )– 4 p 6– w Pp( )= = =

w K p e–( ) w K p( ) 2 p 1–( ) p 1–( ) 1–+{ }–=

p p 1–( )2 4 p 6–( )– p3 2 p2– 3 p– 6.+= =

x 0≥ w G( ) x=

x 0≥ w G( ) x=

x 0= G K1≅ x 2⁄ v 0>
x 0= G K1≅ x 2= G K2≅ v 4=

w G( ) x 6= G P3≅ x 8=

w G( ) x 10≥
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Abstract
The distance energy ED of a graph G is defined as the sum of the absolute values of the eigenvalues
of the distance matrix of G. Recently, bounds on ED for graphs of diameter 2 were determined. In this
paper we obtain bounds on ED that are valid for any connected graph, thus generalizing and extending
previous results.

1. Introduction

In this paper we are concerned with simple graphs; that is, graphs with no loop, multiple or directed edge. Let
G be such a graph, possessing n vertices and m edges. We say that G is an (n, m)-graph.

Let the graph G be connected and let its vertices be labelled . The distance matrix of G is defined
to be the square matrix , where dij is the distance between the vertices vi and vj in G [1].
The eigenvalues of the distance matrix are denoted by  and are said to be the D-eigenvalues of
G. Since the distance matrix is symmetric, its eigenvalues are real and can be ordered: .
Since all diagonal elements of D are equal to zero,

(1)

The characteristic polynomial and eigenvalues of the distance matrix were much studied in the past [2]–[7].
Recently the distance energy  of a graph G has been defined [8] as

v1 v2 … vn, , ,
D D G( ) dij[ ]= =

μ1 μ2 … μn, , ,
μ1 μ2 … μn≥ ≥ ≥

μi
i 1=

n

∑ 0.=

ED ED G( )=
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(2)

The form of Equation (2) has (deliberately) been chosen so as to be fully analogous to the definition of graph
energy [9]–[11]

where  are the ordinary graph eigenvalues [12]; that is, the eigenvalues of the adjacency matrix
A(G). Recall that in the past few years, the graph energy  has been extensively studied in the mathemat-
ics [13]–[19] and mathematico-chemical literature [20]–[26].

We approach the study of the distance energy by making the following observation. In the theory of ordinary
graph energy [10][11] there are numerous results (lower and upper bounds, approximate formulas, and so
forth) relating  with the parameters n and m. In most cases, the parameter m enters the theory via the well
known relation [12]

(3)

The distance-spectral analog of Equation (3) is

(4)

where

Equation (4) is easily deduced:

.

In a recent paper [8] Indulal, Vijaykumar, and Gutman reported lower and upper bounds for the distance
energy of graphs whose diameter (that is, maximal distance between vertices) does not exceed two. In this
paper we obtain bounds for the distance energy of arbitrary connected (n, m)-graphs that generalize the results
obtained in [8].

In an (n, m)-graph of diameter less than or equal to two, there are m pairs of vertices at distance one, whereas
the remaining  pairs of vertices are at distance two. Therefore,

2. Bounds on the Distance Energy

Theorem 1: Let G be a connected (n, m)-graph and let Δ be the absolute value of the deter-
minant of the distance matrix D(G). Then

(5)

ED ED G( ) μi
i 1=

n

∑ .= =

E E G( ) λi
i 1=

n

∑ ,= =

λ1 λ2 … λn, , ,
E G( )

E G( )

λi( )2

i 1=

n

∑ 2m.=

μi( )2

i 1=

n

∑ 2M ,=

M dij( )2

i j<
∑= .

μi( )2

i 1=

n

∑ TrD2 D2[ ]ii

i 1=

n

∑ dijd ji
j 1=

n

∑
i 1=

n

∑ dij( )2

j 1=

n

∑
i 1=

n

∑ 2 dij( )2

i j<
∑= = = = =

n
2⎝ ⎠

⎛ ⎞ m–

M m 12⋅ n
2⎝ ⎠

⎛ ⎞ m– 22⋅+ 2n2 2n– 3m.–= =

2M n n 1–( )Δ2 n/+ ED G( ) 2Mn.≤ ≤
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Proof: 

(1) Lower bound: By the definition of distance energy and Equation (4),

(6)

Since for nonnegative numbers the arithmetic mean is not smaller than the geometric mean,

Therefore,

(7)

Combining (6) and (7) we obtain the lower bound.

(2) Upper bound: Consider the quantity X

the value of which is evidently non-negative. By direct expansion,

which, in view of Equations (2) and (4) yields

and the upper bound follows from . �

By substituting into the estimates (5)  we obtain a result for graphs of diameter 2:

Corollary 1.1: If an n-vertex graph G has diameter 1; that is, if , 
then . If G is an (n, m)-graph of diameter 2, then

�

The above inequalities were reported in [8].

For any n-vertex tree T [2],

which leads to:

Corollary 1.2: If T is an n-vertex tree, then

�

ED G( )2 μi
i 1=

n

∑⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

μi( )2

i 1=

n

∑ 2 μi μ j
i j<
∑+= =

2M 2 μi μ j
i j<
∑+ 2M μi μ j

i j≠
∑+ .= =

1
n n 1–( )
-------------------- μi μ j

i j≠
∑ μi μ j

i j≠
∏⎝ ⎠

⎛ ⎞
1

n n 1–( )
--------------------

≥ μi
2 n 1–( )

i 1=

n

∏⎝ ⎠
⎜ ⎟
⎛ ⎞

1
n n 1–( )
--------------------

=

μi
2 n/

i 1=

n

∏ Δ2 n/ .= =

μi μ j
i j≠
∑ n n 1–( )Δ2 n/ .≥

X μi μ j–( )2

j 1=

n

∑
i 1=

n

∑ ,=

X n μi( )2

i 1=

2

∑ n μ j( )2

j 1=

2

∑ 2 μi
i 1=

n

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

μ j
j 1=

n

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

–+ ,=

X 2nM 2nM 2 ED( )2–+=

X 0≥

M 2n2 2n– 3m–=

G Kn≅
ED G( ) E G( ) 2n 2–= =

4n2 4n– 6m– n n 1–( )Δ2 n/+ ED G( ) 4n3 4n2– 6mn– .≤ ≤

detD T( ) 1–( )n 1– n 1–( )2n 2– ,=

ED G( ) 2M 4n n 1–( ) n 1–
4

------------⎝ ⎠
⎛ ⎞ 1 n/

+ .≥
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Theorem 2: Let G be a connected (n, m)-graph and let M be the quantity defined 
by Equation (4). Then

(8)

Proof: 

(1) Lower bound: From (1) and (4) we obtain

that is,

Now,

and the lower bound follows.

(2) Upper bound: The minimal possible value for M of an (n, m)-graph is , attained for the complete
graph, in which any two vertices are at unit distance. From  it follows that

By combining this inequality with the upper bound in (5) we obtain the upper bound in (8). �

Theorem 3: Let G be a connected (n, m)-graph. Then

(9)

Proof: As already mentioned, the minimal value of M is . When this is substituted into the lower
bound in (8) we obtain the lower bound in (9).

From results obtained elsewhere [27][28] we know that the maximal possible value of M for a connected
(n, m)-graph is equal to , and is attained for the n-vertex path. The upper bound in (9) then fol-
lows from the upper bound in (5). �

3. Discussion

At this time it is difficult to see how good the estimates given in Theorems 1–3 are. What is certain is that
these bounds are not best possible. It would be of some value to find out which connected n-vertex graphs
have the smallest and greatest distance-energy. In this connection, it looks plausible to state the following:

Conjecture 1: The complete graph Kn is the connected n-vertex graph with smallest 
distance energy (equal to ). �

We do not dare to state a conjecture about the graph with greatest distance energy, but the path graph Pn cer-
tainly deserves to be seriously considered as a candidate.

As a concluding remark we mention that the inequalities stated here as Theorems 1, 2, and 3, have analogies
in the theory of ordinary graph energy. The “pair” of Theorem 1 is quite similar to (8), viz.:

2 M ED G( ) M 1 8M 1++( ).≤ ≤

μi
i 1=

n

∑⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

2M 2 μiμ j
i j<
∑+ 0,= =

μiμ j
i j<
∑ M .–=

ED( )2 μi( )2

i 1=
∑ 2 μi μ j

i j<
∑+=

2M μiμ j
i j<
∑+≥ 2M 2 M–+ 4M= =

n
2⎝ ⎠

⎛ ⎞
n
2⎝ ⎠

⎛ ⎞ M≤

n 1
2
--- 1 8M 1++( )≤ .

2n n 1–( ) ED G( ) n3 n2 1–( )
6

-------------------------.≤ ≤

n n 1–( ) 2⁄

n2 n2 1–( ) 12⁄

2 n 1–( )

2m n n 1–( ) detA G( ) 2 n/+ E G( ) 2mn,≤ ≤
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and was obtained long time ago [29]. The “pairs” of Theorems 2 and 3 read [30][31]:

and

and have forms that significantly differ from (8) and (9).
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Abstract
Let G be a graph and I be a σ-field of induced subgraphs of G. A non-negative extended real valued
countably additive graph function μv on , is called a vertex measure on I. The ordered triplet

 is said to be a vertex measure space.

1. Introduction

The authors introduced the concept of edge measurability of a graph and proved some results related to this
concept elsewhere [1][2]. In this paper we study the vertex analog of the concept and develop results related
to this concept.

For basic concepts and terminology not given here we follow [3] for graph theory and [4] for measure theory.
First, recall some basic definitions in graph theory.

Definition 1.1: A graph G with p vertices and q edges is called a (p,q) graph, where p and
q are, respectively, known as the order and the size of the graph G. �

Definition 1.2: A (p, q) graph with  and  is called an empty graph and is
denoted by ϕ. �

Definition 1.3: A (p,q) graph with  is called a null graph and is denoted by φ.
�

Definition 1.4: Let G be a graph and H be a subgraph of G. The edge complement of H in
G is the subgraph of G obtained by deleting all the edges of H from G and is denoted by H′.

�

To define vertex measurability, we first need the following:

Definition 1.5: Let  be a graph and  be a subgraph of G. The
vertex complement of H in G is denoted by  and is defined as the subgraph obtained
from G by deleting all the vertices of H. That is, . Hereafter, we use Hc

rather than . �

Example: For the graph G shown in Figure 1 and its subgraph H shown in Figure 2, the vertex complement
is shown in Figure 3.

We make the following observations about the vertex complement of a subgraph H of a graph G.

I ∅≠
G I μv, ,( )

p 0≠ q 0=

p q 0= =

G V E,( )= H V 1 E1,( )=
HV G

c

HV G

c G V V 1–[ ]=
HV G

c

Figure 1: G. Figure 2: H. Figure 3: Hc.
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Observations: 

(1) , , .

(2) H and Hc are vertex disjoint subgraphs of G.

(3) H and Hc are edge disjoint subgraphs of G.

(4)  is not always equal to H.

(5)  need not be equal to G. �

Observation (4) tells that the structure property is not satisfied.

Example: Consider the graph G shown in Figure 4 and its subgraph H1 shown in Figure 5, the vertex com-
plement  of H1 is shown in Figure 6.

The graph  is displayed in Figure 7. From Figures 5 and 7 it is clear that . Hence, the struc-
ture property is not satisfied. Additionally, as we observed,  need not be equal to G.

Example: Consider the subgraph H illustrated in Figure 2 and its vertex complement shown in Figure 3.
Their union is shown in Figure 8. It is clear that . There is a subgraph, displayed in Figure 9, that
is not found in the union. Such a subgraph is called a hidden subgraph of G related to H and is denoted by Hh.

Remark: Let G be a graph and let H be a subgraph of G. The hidden subgraphs related to H and to Hc are the
same.

2. Vertex Measurable Graphs

In this section we first make some observations about Hh.

Observations: Let G be a graph and H be a subgraph of G. Let Hc be the vertex comple-
ment of H in G and let Hh be the hidden subgraph related to H. Then

(1) .

(2) .

(3) H, Hh, and Hc are edge disjoint subgraphs of G. �

This leads to the following definition.

Definition 2.1: Let  be a graph and for  and , let  and
 be two induced subgraphs of G. The induced union of  and  is the induced

subgraph . �

For convenience, let  and . We denote  by . In general,

, where  for .

V H( ) V G( )⊆ V Hc( ) V G( )⊆ V H( ) V Hc( )∪ V G( )=

Hc( )c

H Hc∪

H1
c

Figure 4 Figure 5 Figure 6 Figure 7

H1
c( )c H1

c( )c H1≠
H Hc∪

H Hc∪ G≠

Figure 8 Figure 9

V H( ) V Hc( ) V Hh( )∪ ∪ V H( ) V Hc( )∪ V G( )= =

E H( ) E Hc( ) E Hh( )∪ ∪ E G( )=

G V E,( )= S1 V⊂ S2 V⊂ S1〈 〉
S2〈 〉 S1〈 〉 S2〈 〉

S1 S2∪〈 〉
H1 S1〈 〉= H2 S2〈 〉= S1 S2∪〈 〉 H1 H2

×∪
Si

i 1=

n

∪〈 〉 Hi
i 1=

n
×∪= Si V⊂ i 1 2 … n, , ,=
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Example: Consider the graph G shown in Figure 10. Here . Let 
and then  is as shown in Figure 11. Let  and  is as shown in
Figure 12. Finally,  is as illustrated in Figure 13. 

Observations: Let  be a graph.

1. For , if  and  are two vertex induced subgraphs of G,
then .

2.  that is, .

3. If ,where , then , the vertex complement of H1 in G, is the vertex
induced subgraph .

4. If ,where , then  and .
 and .

5. If ,where , then .
Therefore, . �

Note: H1 and  are not only edge disjoint but also vertex disjoint subgraphs of G.

By Properties 4 and 5 one can easily confirm preservation of the structure property.

Theorem 2.2: Let  be a graph. For  and , let  and
 be two induced subgraphs of G. Then

(1) .

(2) .

Proof: 

 and .

Therefore, . This implies:

(1) .

V v1 v2 … v8, , ,{ }= S1 v1 v2 v3 v4, , ,{ }=
H1 S1〈 〉= S2 v5 v6 v7, ,{ }= H2 S2〈 〉=

H1 H2
×∪ S1 S2∪〈 〉=

Figure 10 Figure 11

Figure 12 Figure 13

G V E,( )=

S1 S2, V⊂ H1 S1〈 〉= H2 S2〈 〉=
H1 H2∪ H1 H2

×∪⊆
H1 H2∩ S1 S2∩〈 〉 ;= S1〈 〉 S2〈 〉∩ S1 S2∩〈 〉=

H1 S1〈 〉= S1 V⊂ H1
c

V S1–〈 〉
H1 S1〈 〉= S1 V⊂ V H1 H1

c×∪( ) V G( )= E H1 H1
c×∪( ) E G( )=

H1 H1
c×∪ G= H1 H1

c∩ ∅=

H1 S1〈 〉= S1 V⊂ H1
c V S1–〈 〉=

H1
c( )c V V S1–( )–〈 〉 S1〈 〉= =

H1
c

G V E,( )= S1 V⊂ S2 V⊂ H1 S1〈 〉=
H2 S2〈 〉=

H1 H2
×∪( )c H1

c H2
c∩=

H1 H2∩( )c H1
c H2

c×∪=

H1 S1〈 〉= H1
c⇒ V S1–〈 〉= H2 S2〈 〉= H2

c⇒ V S2–〈 〉=

H1 H2
×∪ S1 S2∪〈 〉=

H1 H2
×∪( )c V S1 S2∪( )–〈 〉=
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Now,

(2) .

From (1) and (2) it follows that

.

Since

,

then

(3) .

Furthermore,

.

From (3) and (4) it follows that

. �

Theorem 2.2 can be generalized as follows.

Corollary 2.3: If , , …,  are induced subgraphs of a
graph , then

(1) and (2) . �

Lemma 2.4: Let G be a graph and let I be a collection of induced subgraphs of G, together
with the empty graph φ. I is a field if and only if

(1) ,

(2)  for each H, and

(3)  ⇒  and .
�

Lemma 2.5: If condition (3) in Lemma 2.4 is replaced by a countable induced union and a
countable intersection, then I is a σ-field of G. �

We note that G may be infinite, and then if , then  and  are also members of I.

Example: Let G be a non-trivial graph and H be an induced subgraph of G. Then  is a
σ-field containing H.

Example: Let G be a non-trivial graph and I be the collection of all induced subgraphs of G together with the
empty graph φ. Then I is a σ-field.

Definition 2.6: A graph function μv defined on I is said to be finite if  for every
induced subgraph . �

Definition 2.7: Let G be a graph and I be the σ-field of G and let μv be an extended real val-
ued graph function defined on I. We say that μv is finitely additive if

for all vertex disjoint induced subgraphs , . �

H1
c H2

c∩ V S1–〈 〉 V S2–〈 〉∩ V S1 S2∪( )–〈 〉= =

H1 H2
×∪( )c H1

c H2
c∩=

H1 H2∩ S1〈 〉 S2〈 〉∩ S1 S2∩〈 〉= =

H1 H2∩( )c V S1 S2∩( )–〈 〉=

H1
c H2

c×∪ V S1–〈 〉 V S2–〈 〉∪ V S1 S2∩( )–〈 〉= =

H1 H2∩( )c H1
c H2

c×∪=

H1 S1〈 〉= H2 S2〈 〉= Hn Sn〈 〉=
G V E,( )=

Hi
i 1=

n
×∪⎝ ⎠

⎛ ⎞ c
Hi

c

i 1=

n

∩= Hi
i 1=

n

∩⎝ ⎠
⎛ ⎞ c

Hi
c

i 1=

n
×∪=

G I∈

H I∈ Hc I∈⇒

H1 H2 … Hn, , , I∈ Hi
i 1=

n
×∪ I∈ Hi

i 1=

n

∩ I∈

H1 H2 …, , I∈ Hi
i 1=

∞
×∪ Hi

i 1=

n

∩
I G φ H Hc, , ,{ }=

μv H( ) ∞<
H I∈

μv Hi
i 1=

n
×∪⎝ ⎠

⎛ ⎞ μv Hi( )
i 1=

n

∑=

Hi I∈ i 1 2 … n, , ,=
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Definition 2.8: Let I be a σ-field of induced subgraphs of G and μv be an extended real val-
ued graph function defined on I. We say that μv is countably additive on I if

for all vertex disjoint induced subgraphs , . �

Definition 2.9: A finitely additive graph function μv on the field I is said to be σ-finite if
 for  and . �

Theorem 2.10: Let μv be a non-negative finitely additive graph function on the field I. Then

(1) .

(2) If  and , then .

(3)  for all .

(4) If μv is non-negative, then for all 

.

Proof: 

(1) Let  be such that . Then

 ⇒ .

(2) Let  and let . Then

.

Therefore, , which implies that . Since
, then .

(3) We know that , therefore

(4)

(5) .

From (4) and (5) it follows that

Hence,

(4) We prove that

,

by mathematical induction.

By (3), ; that is,

μv Hi
i 1=

∞
×∪⎝ ⎠

⎛ ⎞ μv Hi( )
i 1=

∞

∑=

Hi I∈ i 1 2 … n, , ,=

G Hii 1=
∞×∪= Hi I∈ μv Hi( ) ∞<

μv φ( ) 0=

H1 H2, I∈ H2 H1⊂ μv H2( ) μv H1( )≤
μv H1 H2

×∪( ) μv H1 H2∩( )+ μv H1( ) μv H2( )+= H1 H2, I∈
Hi I∈

μv Hi
i 1=

n
×∪⎝ ⎠

⎛ ⎞ μv Hi( )
i 1=

n

∑≤

H I∈ μv H( ) ∞<

μv H( ) μv H φ×∪( ) μv H( ) μv φ( )+= = μv φ( ) 0=

H1 H2, I∈ H2 H1⊂

H1 H2 H1 H2–( )×∪=

μv H1( ) μv H2( ) μv H1 H2–( )+= μv H2( ) μv H1( ) μv H1 H2–( )–=
μv H1 H2–( ) 0≥ μv H2( ) μv H1( )≤

H1 H1 H2∩( ) H1 H2
c∩( )×∪=

μv H1( ) μv H1 H2∩( ) μv H1 H2
c∩( )+=

μv H2( ) μv H1 H2∩( ) μv H1
c H2∩( )+=

μv H1( ) μv H2( )+ μv H1 H2∩( ) μv H1 H2∩( ) μv H1 H2
c∩( ) μv H1

c H2∩( )+ +{ }+=

μv H1 H2∩( ) H1 H2
c∩( ) H1vG

c H2∩( )×∪×∪⎝ ⎠
⎛ ⎞=

μv H1 H2∩( ) μv H1 H2
×∪( )+ .=

μv H1 H2
×∪( ) μv H1( ) μv H2( ) μv H1 H2∩( ).–+=

μv Hi
i 1=

n
×∪⎝ ⎠

⎛ ⎞ μv Hi( )
i 1=

n

∑≤

μv H1 H2
×∪( ) μv H1( ) μv H2( )+≤
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.

Assume that the result is true for all values of ; that is,

Now consider

�

Definition 2.11: A non-negative extended real valued countably additive graph function μv
on I (that is, there exists at least one H such that ) is called a vertex measure on
I. The members of I are said to be vertex measurable graphs. �

Definition 2.12: A vertex measure space is an ordered triple  where G is a graph,
I is a σ-field in G, and μv is a vertex measure on I. �

Example: Let G be a graph and I be a σ-field of all induced subgraphs of G, together with the null graph φ.
Define  to be the number of vertices in H. If  and H has n vertices, , then

. This vertex measure, in particular, is called the vertex counting measure on I.

3. Main Results

Theorem 3.1: Let μv be a vertex measure, not identically ∞ on a σ-field I. Then

(1)

(2) If  and , then .

(3)  for all .

(4)  for .

Proof: Statements (1), (2), and (3) follow directly from Theorem 2.10.

Statement (4) of Theorem 2.10 asserts that

.

Taking limits as  on both sides

,

μv Hi
i 1=

2
×∪⎝ ⎠

⎛ ⎞ μv Hi( )
i 1=

2

∑≤

i n<

μv Hi
i 1=

n 1
×
–

∪⎝ ⎠
⎛ ⎞ μv Hi( )

i 1=

n 1–

∑ .≤

μv Hi
i 1=

n
×∪⎝ ⎠

⎛ ⎞ μv Hi
i 1=

n 1
×
–

∪⎝ ⎠
⎛ ⎞ Hn

×∪⎝ ⎠
⎛ ⎞=

μv Hi
i 1=

n 1
×
–

∪⎝ ⎠
⎛ ⎞ μv Hn( )+≤

μv Hi( )
i 1=

n 1–

∑ μv Hn( )+≤

μv Hi( )
i 1=

n

∑ .≤

μv H( ) ∞<

G I μv, ,( )

μv H( ) H I∈ n 0 1 2 …, , ,=
μv H( ) n=

μv φ( ) 0.=

H1 H2, I∈ H2 H1⊂ μv H2( ) μv H1( )≤
μv H1 H2

×∪( ) μv H1 H2∩( )+ μv H1( ) μv H2( )+= H1 H2, I∈

μv Hi
i 1=

∞
×∪⎝ ⎠

⎛ ⎞ μv Hi( )
i 1=

∞

∑≤ Hi I∈

μv Hi
i 1=

n
×∪⎝ ⎠

⎛ ⎞ μv Hi( )
i 1=

n

∑≤

n ∞→

Hi
i 1=

n
×∪⎝ ⎠

⎛ ⎞
n ∞→
lim μv Hi( )

i 1=

n

∑n ∞→
lim≤
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that is,

�

Theorem 3.2: Let  be a sequence of induced subgraphs of G, such that 

for all  and . Then

Proof: If  for some , then  for all  and . Hence
the result is true.

Suppose that  for all . Set  for all , with . Then  =
 for .

Since  is a disjoint collection of induced subgraphs in I with

,

then

Hence,

�

Theorem 3.3: Let  be a sequence of induced subgraphs in I such that 
for all  and . Also, let  for some , then

Proof: Without loss of generality we may assume that , so that . Let  for
 and . Then Fn and F∞ both belong to I and . Hence, by Theorem 3.2,

; that is, . This implies, ,
which implies that . �

Definition 3.4: A vertex measure  is called a vertex probability measure if
. �

Note: Generally, a vertex probability measure μv is denoted by Pv.

Definition 3.5: A vertex probability measure space is an ordered triple . �

Example: Let G be a finite graph and let I be a σ-field of induced subgraphs of G. Define a graph function
 by

μv Hi
i 1=

∞
×∪⎝ ⎠

⎛ ⎞ μv Hi( ).

i 1=

∞

∑≤

Hn{ } Hn Hn 1+⊂
n 1≥ Hn

n 1≥
×∪⎝ ⎠

⎛ ⎞ I∈

μv Hn
n 1≥

×∪⎝ ⎠
⎛ ⎞ μv Hn( )

n ∞→
lim .=

μv Hn( ) ∞= n n0= μv Hn( ) ∞= n n0≥ μv Hn
n 1≥

×∪⎝ ⎠
⎛ ⎞ ∞=

μv Hn( ) ∞< n 1≥ Ln Hn Hn 1––= n 1≥ H0 φ= μv Ln( )
μv Hn Hn 1––( ) μv Hn( ) μv Hn 1–( )–= n 1≥

Ln{ }

Ln
n 1≥

×∪ Hn
n 1≥

×∪=

μv Hn
n 1≥

×∪⎝ ⎠
⎛ ⎞ μv Ln

n 1≥
×∪⎝ ⎠

⎛ ⎞=

μv Ln( ).

i 1=

∞

∑=

μv Hn( ) μv Hn 1–( )–{ }
i 1=

N

∑N ∞→
lim=

μv HN( )
i 1=

N

∑N ∞→
lim .=

μv Hn
n 1≥

×∪⎝ ⎠
⎛ ⎞ μv Hn( )

n ∞→
lim .=

Hn{ } Hn 1+ Hn⊂
n 1≥ H Hn

n 1≥
∩ I∈= μv Hn0

( ) ∞< n0 N∈

μv Hn( )
n ∞→
lim μv H( ).=

n0 1= μv H1( ) ∞< Fn H1 Hn–=
n 1≥ F∞ H1 H–= Fn F∞→
μv Fn( ) μv F∞( )→ μv H1 Hn–( ) μv H1 H–( )→ μv H1( ) μv Hn( )– μv H1( ) μv H( )–→

μv Hn( ) μv H( )→

μv: I �→
μv G( ) 1=

G I Pv, ,( )

Pv: I �→
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 for all .

Then ,  for all , and . Hence Pv is a vertex probability measure
defined on I.
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Abstract
The energy  of a graph G is equal to the sum of the absolute values of the eigenvalues of G. If
G is an r-regular graph on n vertices then  and this bound is sharp.
Recently Balakrishnan showed that for , there exist infinitely many r-regular graphs G such that

 and then asked: Does there exist an r-regular graph G on n vertices for some r,
, such that . In this paper we show that this problem has a solution for all

 where  (mod 4). The energy of a tensor product and join of graphs is discussed.

1. Introduction

Let G be a simple undirected graph on n vertices and m edges. Let  be the adjacency matrix of G. The
characteristic polynomial of G is defined by , where I is an identity matrix. The
roots of the equation , denoted by  are called the eigenvalues of G [1]. The energy
of a graph G is defined by  (see [2]).

The complete graph Kn has energy . If , then G is called hyperenergetic, otherwise
it is called non-hyperenergetic [3]–[10].

2. An Open Problem of R. Balakrishnan

For a graph G on n vertices and m edges it is shown [7] that

(1)

However, if G is an r-regular graph then [10]

(2)

There are regular graphs for which the bound B2 is attained. For example,  and the complement
of Kn, , satisfies .

Recently R. Balakrishnan [11] has shown that for , there exist infinitely many r–regular graphs G such
that  and he posed the following problem.

Problem [11]: Given a positive integer , does there exist an r-regular graph G for
some r, , such that , where ? �

Because , . Hence, graphs whose energy is almost the same as B2 need to be investigated.

Here we give an affirmative answer to this problem for all ,  (mod 4).

E G( )
E G( ) r r n 1–( ) n r–( )+≤ B2=

ε 0>
E G( ) B2⁄ ε<
0 r n< < E G( ) B2⁄ 1 ε–<
n 5≥ n 1≡

A G( )
Φ G λ;( ) det λI A G( )–( )=

Φ G λ;( ) 0= λ1 λ2 … λn, , ,
E G( ) λii 1=

n∑=

2 n 1–( ) E G( ) 2 n 1–( )>

E G( ) 2m
n

------- n 1–( ) 2m 2m
n

-------⎝ ⎠
⎛ ⎞ 2

–+≤ B1.=

E G( ) r r n 1–( ) n r–( )+≤ B2.=

E Kn( ) B2=
Kn E Kn( ) 0=

ε 0>
E G( ) B2⁄ ε<

n 3≥
0 r n< < E G( ) B2⁄ 1 ε–< B2 r r n 1–( ) n r–( )+=

ε 0> 1 ε– 1<

n 5≥ n 1≡
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A regular graph G on n vertices that is neither complete nor empty is called a strongly regular graph [12] with
parameters  if it is r-regular, every pair of adjacent vertices has a common neighbors, and every
pair of distinct nonadjacent vertices has c common neighbors. A simple example is the cycle C5, which is a
strongly regular graph with parameters .

A connected regular graph G is strongly regular if and only if it has exactly three distinct eigenvalues [13].

The eigenvalues of a strongly regular graph with parameters  are:

r, and

with multiplicities

1, and  respectively.

The strongly regular graph with parameters  is called a Paley graph [14].

Theorem 1: Given any positive integer ,  (mod 4), and , there exists an
r-regular graph G on n vertices for some r, , such that .

Proof: Let G be the Paley graph on n vertices. Then G is a strongly regular graph with parameters
. G is a is regular graph of degree  and its eigenvalues are

, , and  with multiplicities 1, , and , respectively.
Therefore,

From Equation (2), the bound B2 on  is

Hence,

 tends to 1 as .

This shows that there exists an r-regular graph G on n vertices,  (mod 4) for some r, , such that

. �

Thus, the problem of Balakrishnan has a partial solution in the form of Paley graphs on  vertices, 
(mod 4).

3. The Energy of a Tensor Product and the Join of Graphs

Definition: The tensor product of two graphs G1 and G2 is the graph  with vertex
set  and vertices  and  are adjacent if and only if u1 is adja-
cent to v1 in G1 and u2 is adjacent to v2 in G2. �

Table: Values of E(G), B2, and E(G)/B2

n

101 527.4937811 554.9752469 0.950481

525065 190365547.31101018 190496994.46400146 0.999309977

1011101 508601085.7 508854112.1 0.999502752

102496524 518865929169.129646 518891555830.893789 0.999950612

n r a c, , ,( )

5 2 0 1, , ,( )

n r a c, , ,( )

a c–( ) a c–( )2 4 r c–( )++
2

------------------------------------------------------------------------, a c–( ) a c–( )2 4 r c–( )+–
2

-----------------------------------------------------------------------,

1
2
--- n 1–( ) 2r n 1–( ) a c–( )+

a c–( )2 4 r c–( )+
-------------------------------------------------– , 1

2
--- n 1–( ) 2r n 1–( ) a c–( )+

a c–( )2 4 r c–( )+
-------------------------------------------------+ ,

n n 1–
2

------------ n 5–
4

------------ n 1–
4

------------, , ,⎝ ⎠
⎛ ⎞

n 5≥ n 1≡ ε 0>
0 r n< < E G( ) B2⁄ 1 ε–>

n n 1–( ) 2⁄ n 5–( ) 4⁄ n 1–( ) 4⁄, , ,( ) n 1–( ) 2⁄
n 1–( ) 2⁄ 1– n+( ) 2⁄ 1– n–( ) 2⁄ n 1–( ) 2⁄ n 1–( ) 2⁄

E G( ) n 1–
2

------------ 1– n+
2

---------------------
n 1–

2
------------⎝ ⎠

⎛ ⎞ 1– n–
2

--------------------
n 1–

2
------------⎝ ⎠

⎛ ⎞+ + n 1–( ) 2 n 1+( )
4

------------------------------------------.= =

E G( )

B2
n 1–

2
------------ n 1–

2
------------⎝ ⎠

⎛ ⎞ n 1–( ) n n 1–
2

------------–⎝ ⎠
⎛ ⎞+ n 1–( ) 1 n 1++( )

2
------------------------------------------------.= =

E G( )
B2

------------ 2 n 1+

2 1 n 1++( )
----------------------------------= n ∞→

n 1≡ 0 r n< <
E G( ) B2⁄ 1 ε–>

E G( ) n 1–( ) 2 n 1+( )
4

------------------------------------------= B2
n 1–( ) 1 n 1++( )

2
------------------------------------------------=

E G( )
B2

------------

n 5≥ n 1≡

G1 G2⊗
V G1( ) V G2( )× u1 u2,( ) v1 v2,( )
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Theorem 2 [11]: If G1 and G2 are any two graphs, then . �

Theorem 3: If G1 and G2 are hyperenergetic graphs with n1 and n2 vertices, respectively,
then  is hyperenergetic.

Proof: From the table given in [1], it is easy to see that there is no hyperenergetic graph for . Hence, we
consider .

The graphs G1 and G2 are hyperenergetic. Therefore, , . The order of  is
 and 

 is hyperenergetic if . This gives either

or

Both inequalities are true for all . Hence the result. �

Corollary 4: Let Gi be a hyperenergetic graph with ni vertices, , .
Then  is hyperenergetic. �

Theorem 5: If G is a non-hyperenergetic graph with n vertices, then , ,
and  are non-hyperenergetic.

Proof: G is non-hyperenergetic. Therefore, . The order of  is 2n and .
Therefore,  Similarly, one can show that

 and  are non-hyperenergetic. �

Definition: The join  of two graphs G1 and G2 is the graph obtained by joining
every vertex of G1 with every vertex of G2. �

Theorem 6 [15]: If Gi is a regular graph of degree ri with ni vertices, , then

(3) �

Theorem 7: If Gi is a regular graph of degree ri with ni vertices, , then

Proof: From (3), we obtain

Let  and  The roots
of  are the eigenvalues of  and r1, r2. Therefore, the sum of the absolute values of the roots
of  is

(4) .

The roots of  are the eigenvalues of G1 and G2, and

Therefore, the sum of the absolute values of the roots of  is

This is equal to

(5)

Since , equating (4) and (5) we obtain

E G1 G2⊗( ) E G1( )E G2( )=

G1 G2⊗
n 5≤

n1 n2, 5>
E Gi( ) 2 ni 1–( )> i 1 2,= G1 G2⊗

n1n2 E G1 G2⊗( ) E G1( )E G2( ) 2 n1 1–( )2 n2 1–( ).>=

G1 G2⊗ 2 n1 1–( )2 n2 1–( ) 2 n1n2 1–( )>

n1

2n2 3–

n2 2–
------------------> 2 1

n2 2–
--------------+= n2

2n1 3–

n1 2–
------------------> 2 1

n1 2–
--------------+ .=

n1 n2, 5>

i 1 2 … k, , ,= k 2≥
G1 G2 … Gk⊗ ⊗ ⊗

K2 G⊗ C4 G⊗
C4 G⊗

E G( ) 2n 2–≤ K2 G⊗ E K2( ) 2=
E K2 G⊗( ) 2E G( ) 2 2n 2–( )≤ 2 2n 1–( ) 2– 2 2n 1–( ).<= =

C4 G⊗ C4 G⊗

G1 G2+

i 1 2,=

Φ G1 G2 λ;+( )
Φ G1 λ;( )Φ G2 λ;( )

λ r1–( ) λ r2–( )
------------------------------------------ λ r1–( ) λ r2–( ) n1n2–[ ].=

i 1 2,=

E G1 G2+( ) E G1( ) E G2( ) r1 r2+( )2 4 n1n2 r1r2–( )+ r1 r2+( )–+ + .=

Φ G1 G2 λ;+( ) λ r1–( ) λ r2–( ) Φ G1 λ;( )Φ G2 λ;( ) λ r1–( ) λ r2–( ) n1n2–[ ].=

P1 Φ G1 G2 λ;+( ) λ r1–( ) λ r2–( )= P2 Φ G1 λ;( )Φ G2 λ;( ) λ r1–( ) λ r2–( ) n1n2–[ ].=
P1 0= G1 G2+
P1 0=

E G1 G2+( ) r1 r2+ +

P2 0=

r1 r2 r1 r2+( )2 4 n1n2 r1r2–( )+±+

2
----------------------------------------------------------------------------------------------.

P2 0=

E G1( ) E G2( )
r1 r2 r1 r2+( )2 4 n1n2 r1r2–( )++ +

2
----------------------------------------------------------------------------------------------

r1 r2 r1 r2+( )2 4 n1n2 r1r2–( )+–+

2
--------------------------------------------------------------------------------------------- .+ + +

E G1( ) E G2( ) r1 r2+( )2 4 n1n2 r1r2–( )+ .+ +

P1 P2=



44 Graph Theory Notes of New York LV (2008)

gtn 5506 Jog&.fm page proofs printed (jwk) March 16, 2009 

�

If  and , then from Theorem 7, we have following corollary.

Corollary 8: If G1 and G2 are regular graphs of degree r on n vertices, then

�

Theorem 9: Let Gi be a regular graph of degree ri with ni vertices, . If G1 and G2
are hyperenergetic, then  is also hyperenergetic.

Proof: Let Gi be a hyperenergetic graph. Therefore, , .

The order of  is . To show that  is hyperenergetic, it is sufficient to show that

(6)

Simplification of (6) leads to , which is true since  and .
Hence the result. �
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E G1 G2+( ) E G1( ) E G2( ) r1 r2+( )2 4 n1n2 r1r2–( )+ r1 r2+( ).–+ +=

r1 r2= n1 n2=

E G1 G2+( ) E G1( ) E G2( ) 2n 2r .–+ +=

i 1 2,=
G1 G2+

E Gi( ) 2 ni 1–( )> i 1 2,=

E G1 G2+( ) E G1( ) E G2( ) r1 r2+( )2 4 n1n2 r1r2–( )+ r1 r2+( )–+ +=

2 n1 1–( ) 2 n2 1–( ) r1 r2+( )2 4 n1n2 r1r2–( )+ r1 r2+( ).–+ +>

G1 G2+ n1 n2+ G1 G2+

2 n1 1–( ) 2 n2 1–( ) r1 r2+( )2 4 n1n2 r1r2–( )+ r1 r2+( )–+ + 2 n1 n2 1–+( ).>

n1n2 r1 1+( ) r2 1+( )> r1 n1 1–< r2 n2 1–<
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Abstract
Given any positive integer k, Acharya and Hegde called a (p, q)-graph, , strongly
k - indexable  i f  there  exis ts  a  b i jec t ion  such that   =

, where  for any edge . In particular, they
called G strongly indexable when . Kotzig and Rosa called a (p, q)-graph, , edge-
magic if it admits an edge-magic labelling of G that is defined as a bijection  →

 such that there exists a constant s (called the magic number of f) with
, . Enomoto et al. called an edge-magic labelling f of G super-

edge-magic if  and  and called
G super-edge-magic if there exists a super-edge-magic labelling of G. Figueroa-Centeno et al. estab-
lished that strongly k-indexable labelling extends to super-edge magic labelling. In this paper we
prove that for  the class of strongly k-indexable graphs is a proper subclass of super-edge-
magic graphs and prove that any graph can be embedded in a strongly indexable graph. Furthermore,
we give an algorithmic characterization of strongly indexable unicyclic graphs, thereby arriving at a
partial solution to the open problem of characterizing graphs in the class Un, , that are super-
edge-magic.

1. Introduction

By a graph we mean a finite, undirected, connected graph with no loop or multiple edge. Terms not defined
here are used in the sense of Harary [1].

As a special case of arithmetic graphs, Acharya and Hegde [2][3], introduced the concept of an indexable
graph as follows: Let  be a (p, q)-graph. A labelling of G is a bijection .
A labelling f is called an indexer if f is such that the induced edge function , from  into
the set � of natural numbers, defined by the rule: , , is injective. In par-
ticular, if

for some positive integer k then f is called a k-strong indexer of G. A graph G is said to be indexable
(k-strongly indexable) if it admits an indexer (k-strong indexer). In particular, if  in this definition, then
f is called simply a strong indexer of G. The graph G is said to be strongly indexable if it admits a strong
indexer.

The following result, obtained by Arumugam and Germina [3], settled a conjecture by Acharya and Hegde
[2].

Theorem 1.1 [3]: Every connected graph with at most one cycle is indexable. �

Corollary 1.2 [3]: All unicyclic graphs are indexable. �

G V E,( )=
f : V 0 1 … p 1–, , ,{ }→ f + E G( )( )

k k 1+ … k q 1–+, , ,{ } f + uv( ) f u( ) f v( )+= uv E G( )∈
k 1= G V E,( )=

f : V G( ) E G( )∪
1 2 … p q+, , ,{ }

f u( ) f v( ) f uv( )+ + s= uv∀ E G( )∈
f V G( )( ) 1 2 … p, , ,{ }= f E G( )( ) p 1+ p 2+ … p q+, , ,{ }=

k 1=

n 3≥

G V E,( )= f : V 0 1 … p 1–, , ,{ }→
f +: E G( ) �→ E G( )

f + uv( ) f u( ) f v( )+= uv∀ E G( )∈

f + E G( )( ) := f + uv( ) : uv E G( )∈{ } k k 1 … k q 1–+, ,+,{ }=

k 1=
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Arumugam and Germina also constructed several infinite classes of strongly indexable graphs. In this paper,
we characterize strongly indexable unicyclic graphs, settling an open problem stated by Acharya and Hegde
[2], and prove that any graph can be embedded as an induced subgraph in a strongly indexable graph. For any
given positive integer d, Acharya and Hegde [2] constructed strongly indexable graphs of diameter d in U3,
the class of unicyclic graphs in each of which the unique cycle is a triangle, and posed the open problem to
determine, in general, which graphs in U3 are strongly indexable. We need the following previously known
results.

Theorem 1.3 [2]: Every strongly indexable graph has exactly one nontrivial component
that is either a star or has a triangle. �

Corollary 1.4 [2]: If G is a strongly indexable graph with a triangle as a component then
any strong indexer of G must assign zero to a vertex of the triangle in G. �

Theorem 1.5 [3]: Let G be a unicyclic graph with the unique triangle , such
that each vertex different from u, v, and w has degree one. Let m be the number of pendant
vertices adjacent to u. Then, G is strongly indexable if and only if there exist distinct posi-
tive integers x and y such that one of the following holds:
(1)
(2)  or
(3) �

Theorem 1.6 [3]: Let G  be a unicyclic graph consisting of the unique triangle
, with , a path  of length n

and k pendant edges adjacent to v1. Then G is strongly indexable if and only if ,
where , , , for , and
x, y, z are distinct positive integers with . �

In view of Theorems 1.5 and 1.6, we need to settle the case when, in the triangle of the given unicyclic graph,
the vertex assigned zero has degree greater than two.

2. Main Results

The breadth first search (BFS) algorithm provides a systematic way to visit all the vertices of a connected
graph G starting from a vertex v in G, marking v as visited, and then the unvisited vertices adjacent to v are
visited next. The vertex v is called the father of the subsequent vertices, which are called the children of v.
Unvisited vertices adjacent to the children of v are visited next, and so on. In this process, the edges of G are
partitioned into two subsets T and B, where T is the set of edges traversed during the search and B is the set
of remaining edges. The edges in T form a spanning tree of G, and hence, are called tree edges and the edges
of B are called back edges (see Golumbic [4]).

Theorem 2.1: Let G be a connected unicyclic graph of order p, with a unique triangle
described by . Then a bijective function  is a
strong indexer of G if and only if there exists a BFS algorithm starting at the vertex labelled
zero, such that the following conditions are satisfied.

(1) The vertex labelled zero is one of the vertices of the triangle, say u1.

(2) There exist distinct positive integers  such that , ,
where  and no two zis have a sum equal to zj for any j,

.

(3) There exist pendant vertices adjacent to u1, with  and  =
 for , where  is the father vertex of un in the BFS

algorithm.

Proof: 

Necessity: Let f be a strong indexer of G. Let . Apply the BFS algorithm, starting from vertex x,
labelled zero. Then by Corollary 1.4, . Let , , with  for any
j, . Since f is a strong indexer of G, all integers other than z1, z2, …,  should be labelled among

u v w u, , ,( )

mu x y 3– mv x 1–( ) mw y 1–( ),+ + +=
mv x y 3– mu x 1–( ) mw y 1–( ),+ + +=
mw x y 3– mv x 1–( ) mu y 1–( ).+ + +=

v1 v2 v3 v1, , ,( ) deg v2( ) deg v3( ) 2= = P v1 u1 u2 … un, , , ,( )=
k an=

a2 x y z 5–+ += a3 2x 2y z 6–+ += an an 1– an 2– n+ += n 3>
z x y+≠

u1 u2 u3 u1, , ,( ) f : V 0 1 … p 1–, , ,{ }→

z1 z2 … zm1
, , , f u1 j( ) z j= 1 j m1≤ ≤

N u1( ) u11 u12 … u1m1
, , ,{ }=

1 j m1≤ ≤
a1 zm1

m1–= an
an 1– f F un 1–( )( ) 1–+ n m1 1+≥ F un( )

d ui( ) 2>
x u1= f u1 j( ) z j= 1 j m1≤ ≤ f u2( ) f u3( ) z j≠+

1 j m1≤ ≤ zm1
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the neighborhood vertices (i.e., children) of u1. Without loss of generality, assume . All
integers  must appear as labels among the
children of u1. There are precisely  such numbers, and these must have been assigned to the children
of u1, and hence, require  pendant vertices adjacent to u1. However,  must appear as
a label of a vertex in the neigborhoods of the neighborhood of u1, say u11. Now, all integers other than the
already labelled integers and less than  must have been assigned to the children of u1,
and this number is precisely

Now, assume that the result is true for , where . Since f is a strong
indexer of G, all integers less than , other than those already used, must have been
assigned to the children of u1 and the number of such integers is precisely . That is,
there must be  pendant vertices adjacent to u1. Hence, by the principle of
induction, there exist  pendant vertices adjacent to u1.

Conversely: Let G be a (p, q)-unicyclic graph with the unique triangle . Let the vertices of G
be visited, using the BFS algorithm, starting from the vertex ui, where  for . Let un
denote the nth vertex visited in the BFS algorithm. Let  for . Assume that there exist
an pendant vertices adjacent to u1, where  with . Define

 as follows: . Visit the vertices in the neighborhood of u1 and assign the
values , with  for any j, , in the order in which they are visited.

Label the  pendant vertices in the neighborhood of u1 with the unused integers less than .
Define , where  is the vertex in the neighborhood of u2. Continue the process
of visiting the vertices using the BFS algorithm and label the vertices in the order in which they are visited by

, for each  and the ai pendant vertices with the unlabeled distinct inte-
gers less than . Then  and  = .
Hence,  is a strong indexer of G. �

Notice, from the proof of the above theorem, that the strong indexer generated by the algorithm contains the
first n terms of a Fibonacci sequence with zero as its first term; it also brings out the following converse part
of this statement.

Corollary 2.2: For any integer , given the set  consisting of the first 
terms of a Fibonacci sequence � with zero as its first term, there exists a graph in U3
together with a strong indexer that uses all the elements of . �

Remark 2.3: The graph in U3 having a strong indexer f such that  may not be unique.

This raises an interesting new problem.

Problem 2.4: Given the set  of the first  terms of a Fibonacci sequence �
with zero as its first term, determine the class of all minimal nonisomorphic strongly index-
able graphs in U3 for which  for some strong indexer f. �

Our next result shows that there is no forbidden subgraph characterization for strongly indexable graphs.

Theorem 2.5: Every graph can be embedded as an induced subgraph in a strongly index-
able graph.

Proof: If the given graph is strongly indexable then there is nothing to show. Hence, let G be a graph that is
not strongly indexable. There are two cases.

Case 1: Let the graph G have at least one triangle as a subgraph. Let  be one such triangle.
Choose one of the vertices of this triangle, say , with . Starting from a, visit the vertices
of the graph using the BFS algorithm, visiting vertices not on the triangle first. We define  as
follows: Let . The ith vertex visited, ui, in the BFS algorithm is labelled so that  =

. If G has cycles other than the cycle , as we visit vertices on these cycles
there occurs a back edge at each cycle and hence we obtain two edge values simultaneously. In this case,
the next vertex visited should be assigned the maximum of the two edge values and the minimum value
assigned to a new isolated vertex. Now, assign all the remaining unlabeled integers less than 

z1 z2 … zm1
< < <

1 2 … z1 1– z2 1+ z2 2+ … z3 1– z3 1+ z3 2+ … zm1
1–, , , , , , , , , , ,

zm1
m1–

zm1
m1– f u2( ) f u3( )+

f u11( ) f u2( ) f u3( )+ +

zm1
m1– f u11 1–( )[ ]+ a1 f F u1( )( ) 1.–+=

an 1– an 1– an 2– f F un 2–( )( ) 1–+=
f un 1–( ) f un 2–( )+

an 1– f F un 1–( )( ) 1–+
an an 1– f F un 1–( )( ) 1–+=

an an 1– f F un 1–( )( ) 1–+=

u1 u2 u3 u1, , ,( )
deg u1( ) 2> i 1 2 3, ,=

deg ui( ) mi= i 1 2 3, ,=
an an 1– f F un 1–( )( ) 1–+= a1 zm1

m1–=
f : V 0 1 … p 1–, , ,{ }→ f u1( ) 0=

z1 z2 … zm1
, , , f u2( ) f u3( ) z j≠+ 1 j m1≤ ≤
a1 zm1

m1–= zm1

f um1
( ) 1+ f u2( ) f u3( )+= um1

f ui( ) f ui 1–( ) f ui 2–( )+= i m1 1+>
f ui 1–( ) f ui 2–( )+ f V G( )( ) 0 1 … p 1–, , ,{ }= f + E G( )( ) 1 2 … q, , ,{ }

f : V 0 1 … p 1–, , ,{ }→

n 3≥ An 1+ �( ) n 1+

An 1+ �( )

An �( ) f G( )⊆

An 1+ �( ) n 1+

An �( ) f G( )⊆

x1 x2 x3 x1, , ,( )
a V G( )∈ deg a( ) 2>

f : V G( ) �→
f a( ) 0= f ui( )

f ui 1–( ) f ui 2–( )+ x1 x2 x3 x1, , ,( )

f ui 1–( ) f ui( )+
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to vertices in the neighborhood of a so as to have all consecutive integers from 
as edge labels. Thus, add as many isolated vertices as there are back edges produced at this stage by the BFS
algorithm and  minus the number of tree edges encountered pendant edges adjacent to vertex a. Since
G is a finite (p, q)-graph, the algorithm terminates when the pth vertex is visited by the BFS algorithm, pro-
ducing a graph H that is strongly indexed by f and contains G as an induced subgraph.

Case 2: Let G be the given graph, which is triangle-free. Take a new vertex, x, and join it to any two vertices
a and b of G, so that  is a triangle. Then, proceed as in Case 1 to complete the proof. �

Remark 2.6: Notice that the proof of Theorem 2.5 remains valid even if the given graph G is locally finite
and countably infinite.

3. Connection to Super-Edge-Magic Graphs

In the previous section, we completely characterized strongly indexable unicyclic graphs. They turn out to be
a specific subclass of the class U3 of all connected unicyclic graphs in which the length of the unique cycle
is three. Denote by Un the class of all connected unicyclic graphs in each of which the length of the unique
cycle is precisely n. If , then by Theorem 1.3 it follows that no graph in Un is strongly indexable. If in
any graph , , we join two vertices u and v that are at distance two by a new edge uv, we obtain
a graph  containing the triangle , where x is the vertex on a geodesic  in G.
Now, some such graphs H of the form ,  could be strongly indexable. It would be
interesting to characterize such strongly indexable graphs since they form a subclass of outerplanar graphs
with cyclomatic number two.

Kotzig and Rosa [5] called a (p, q)-graph  edge magic if it admits an edge-magic labelling of G,
defined as a bijection  such that there exists a constant, s (called the
magic number of f), with ,  Enomoto et al. [6] called an edge-magic
labelling f of G super-edge-magic if  and ,
and called G super-edge-magic if there exists a super-edge-magic labelling of G. The following Lemma of
Figuero-Centro et al. [7] provides an interesting connection between k-strongly indexable graphs and super-
edge-magic graphs.

Lemma 3.1: A (p, q)-graph G is super-edge-magic if and only if there exists a bijective
function  such that the set  con-
sists of q consecutive integers. In such a case, f can be extended to a super-edge-magic
labeling of G with constant , where

. �

The following remark is immediate from Lemma 3.1.

Remark 3.2: For any positive integer k, if a (p, q)-graph G is strongly k-indexable, then every strong
k-indexer of G extends G to a super-edge-magic graph with magic number equal to . Con-
versely, if G is super-edge-magic with magic number , then G has a strong k-indexer with k =

.

Remark 3.3: Let f be a super-edge-magic labelling of a (p, q)-graph G and let , 
so that g is a strong k-indexer of G with . If c is the magic number of the super-edge-magic
labeling of G, then  and  results in an isolated edge, which is the trivial case.
Hence, . Also,  and . Hence,

From Remark 3.3, we see that the converse of Remark 3.2 is likely to fail for  and, in fact, it does in
view of Theorem 1.3 and the following result for any value of .

Theorem 3.4 (Figueroa-Centeno et al. [7]): A cycle Cn, , is super-edge-magic if
and only if n is odd. �

Remark 3.5: We see that the class of strongly indexable graphs is a proper subclass of the class of all super-
edge magic graphs. Therefore, Theorem 2.5 is a finer result than that of Enomoto et al. [8], which establishes
that every graph can be embedded in a connected super-edge-magic graph.

1 2 … f ui 1–( ) f ui 2–( )+, , ,{ }

f ui( )

x a b x, , ,( )

n 3>
G Un∈ n 3>

Huv G uv+= u x v u, , ,( ) u x v, ,( )
Huv := G uv+ uv E G( )∈

G V E,( )=
f : V G( ) E G( )∪ 1 2 … p q+, , ,{ }→

f u( ) f v( ) f uv( )+ + s= uv∀ E G( ).∈
f V G( )( ) 1 2 … p, , ,{ }= f E G( )( ) p 1+ p 2+ … p q+, , ,{ }=

f : V G( ) 1 2 … p, , ,{ }→ S f u( ) f v( )+  : uv E G( )∈{ }=

c p q s+ +=

s min c p 1+( )– c p 2+( )– … c p q+( )–, , ,{ }=

p q k 2+ + +
c 4≥

c 2– p– q–

g u( ) f u( ) 1–= u∀ V G( ),∈
k c 2– p– q–=

c 1 2 p 1+ + +≥ p 4+= c 6=
c 6≥ min g v( ) : v V G( )∈{ } 0= min g e( ) : e E G( )∈{ } k=

k c 2– p q+( )– 6 2– k–≥= 2k 4≥ k 2.≥⇔ ⇔

k 1=
n 4≥

n 3≥
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Furthermore, Theorem 2.1 gives a characterization of strongly indexable unicyclic graphs and they all happen
to be in the class U3 (cf. Acharya and Hegde [2]). On the other hand, Figueroa-Centeno et al. [9] raised the
problem of determining which unicyclic graphs are super-edge-magic. This remains an open problem in gen-
eral. However, in view of Theorem 2.1 and Remark 3.5, we have arrived at a partial solution to the following
open problem.

Problem 3.6 [9]: Characterize graphs in the class Un, , that are super-edge-magic.�
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A
adjacency matrix, 41
algebraic connectivity, 6
arithmetic graph, 45
automatic insertion, 19
average eccentricity, 6

B
back edge, 46
breadth first search, 46

C
case distinction, 16
characteristic polynomial, 41
children, 46
chromatic number, 14
claw, 15

free graph, 19
clique number, 15
cocktail party graph, generaized, 20
color critical, 16
complement

edge, 33
vertex, 33

complete
bipartite graph, 25
graph, 15, 25

conjecture, Reed, 14
connectivity

algebraic, 6
edge, 6, 15
vertex, 6, 15

countably additive graph function, 37
counting measure, vertex, 38
critical, color, 16
crossword puzzle phenomenon, 16
cut

edge, 6
vertex, 6

cycle graph, 15, 25

D
data mining, 7
decomposable graph, 19
degree

maximum, 6, 15
minimum, 6, 15

derivation tree, 16
diameter, 6
direct sum, 19
discovery system, 7
distance

energy, 27
matrix, 27

eigenvalue, 27
vertex, 6

E
eccentricity

average, 6
vertex, 6

edge
back, 46
complement, 33
connectivity, 6, 15
cut, 6
degree weight, 25
magic, 48

labeling, 48
measurability, 33
tree, 46
weighted degree sum, 25

eigenvalue, 41
distance matrix, 27
strongly regular graph, 42

empty graph, 33
energy

distance, 27
graph, 41

F
father, 46
Fibonacci sequence, 47
finite graph function, 36
finitely additive graph function, 36

G
generalized

cocktail party graph, 20
line graph, 20

genus, orientable, 18
girth, 18
graph coloring, 15
graph function

countably additive, 37
finite, 36
finitely additive, 36

H
hidden subgraph, 34
hyperenergetic, 41

I
independence number, 15
indexable, 45

k-strongly, 45
strongly, 45

indexer, 45
k-strong, 45
strong, 45, 46

induced union, 34
invariant masking, 22

J
join, 43

K
KBGRAPH, 14
knowledge

based system, 14
propagation, 16

k-strong indexer, 45
k-strongly indexable, 45

KEY-WORD INDEX
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L

labeling, 45

edge magic, 48

super edge magic, 48

Laplacian matrix, 6
line graph, 16, 20

generalized, 20

M

magic

edge, 48

number, 48

masked invariant, 22

matching, 6
perfect, 6

matrix

adjacency, 41

distance, 27

Laplacian, 6
maximum degree, 6, 15

measurability, edge, 33

measure

space, vertex, 38

vertex, 38

counting, 38

probability, 39

minimum degree, 6, 15

N

neighborhood search, variable, 7
non-hyperenergetic, 41

null graph, 33

number

chromatic, 14

clique, 15

independence, 15

magic, 48

vertex-cover, 15

O

order, 33

orientable genus, 18

P

Paley graph, 42

path graph, 25

perfect matching, 6
polynomial, characteristic, 41

probability measure

space, vertex, 39

vertex, 39

product, tensor, 42

propatation, knowledge, 16

R

radius, 6
Reed conjecture, 14
regular, strongly, 42
remoteness, 6

S

search, variable neighborhood, 7
sequence, Fibonacci, 47
size, 33
space, vertex probability measure, 39
spanning tree, 46
star graph, 25
strong indexer, 45, 46
strongly

indexable, 45
regular, 42

eigenvalue, 42
subgraph, hidden, 34
sum, direct, 19
super edge magic labeling, 48

T

tensor product, 42
transmission, 6
tree

derivation, 16
edge, 46
spanning, 46

triangle free graph, 19

U

unicyclic graph, 46
union, induced, 34

V

variable neighborhood search, 7
vertex

complement, 33
connectivity, 6, 15
counting measure, 38
cover number, 15
cut, 6
distance, 6
eccentricity, 6
measurable graphs, 38
measure, 38

space, 38
probability measure, 39

space, 39

W

weight, edge degree, 25
weighted degree sum, 25
wheel, 25
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