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INTRODUCTORY REMARKS

 

We are pleased to announce an enhancement to the editorial structure of 

 

Graph Theory Notes of New York

 

with the appointment of the following Associate Editors:

Krystyna T. Bali

 

ƒ

 

ska (Technical University of Pozna

 

ƒ

 

, POLAND)
Ivan Gutman (University of Kragujevac, YUGOSLAVIA)
Linda Lesniak (Drew University and Western Michigan University, U.S.A)
Peter J. Slater (University of Alabama at Huntsville, U.S.A)

We appreciate their contributions while they were members of our Editorial Board and look forward to
working with them in their new role.

We move ahead in many ways, but somethings remain the same. We continue to ask for your support of the
Mathematical Association of America (MAA) Graph Theory Fund. This is part of the sponsorship for 

 

Graph
Theory Notes

 

 and Graph Theory Days provided by the Metropolitan New York Section (METRO-NY) of
the MAA. Contributions are welcome and can be sent to either of the Editors at their institutional address
with the contribution payable to the ”MAA Graph Theory Fund”.

Another ongoing need is that of hosts for Graph Theory Days. Although not trivial, this is a very manage-
able task that provides a great service to the graph theory community and promotion for the host institutions.
In May 2010 a successful Graph Theory Day 59 was hosted by Southern Connecticut State University, New
Haven, Connecticut.

All efforts to keep our field of Graph Theory the exciting activity that it is are important. Thus, we call on
graph theory enthusiasts to consider submitting an article to 

 

Graph Theory Notes of New York

 

, contributing
to the MAA Graph Theory Fund, and hosting a Graph Theory Day at their institution.

Thank you.

JWK/LVQ
New York

November 2010
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GRAPH THEORY DAY 59

 

Organizing Committee 

 

Graph Theory Day 59 was sponsored by The Metropolitan New York Section of The Mathematical Associ-
ation of America. The event was hosted by the Department of Mathematics and Center for Excellence in
Mathematics and Science, Southern Connecticut State University, New Haven, Connecticut. Conference
hosts Joseph E. Fields and Val Pinciu introduced the featured speakers. John W. Kennedy and Louis V.
Quintas chaired the contributed talks session.

The featured presentations at Graph Theory Day 59 were: 

 

Path Covering of Faulty Hypercubes

 

Ivan Gotchev 
Department of Mathematical Sciences
Central Connecticut State University
New Britain, Connecticut, U.S.A.

 

On Graph Pebbling Numbers and Graham's Conjecture

 

David Herscovici [See this issue page 15]
Department of Computer Science and Digital Design
Quinnipiac University
Hamden, Connecticut, U.S.A.

 

Participants at Graph Theory Day 59

 

Armen R. Baderian Department of MAT/CSC/ITE
Nassau Community College
Garden City, NY 11530-6793
armen.baderian@ncc.edu

Laura Baker Department of Mathematics
Southern Connecticut State University
501 Crescent Street
New Haven, CT 06515

Cameron Bishop Department of Mathematics
Southern Connecticut State University
501 Crescent Street
New Haven, CT 06515

Eric Blatchley Department of Mathematics
Southern Connecticut State University
501 Crescent Street
New Haven, CT 06515

Len Brin Department of Mathematics
Southern Connecticut State University
501 Crescent Street
New Haven, CT 06515
brin1@southernct.edu

Susan Buccino Department of Mathematics
Southern Connecticut State University
501 Crescent Street
New Haven, CT 06515

Joseph E. Fields and Val Pinciu (Southern Connecticut State University)

John W. Kennedy (Queens College, CUNY), Louis V. Quintas (Pace University)
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One Pace Plaza
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educasse@pace.edu
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501 Crescent Street
New Haven, CT 06515 
gingrichr1@southernct.edu

Michael Golinski Department of Mathematics
Southern Connecticut State University
501 Crescent Street
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gotchevi@ccsu.edu
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[GTN LIX:1] THE UPPER STEINER NUMBER OF A GRAPH
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Palayamkottai - 627 002, INDIA
<apskumar1953@yahoo.co.in>

 

2

 

Department of Mathematics
Government College of Engineering
Tirunelveli - 627 007, INDIA
<johnramesh1971@yahoo.co.in>

 

Abstract

 

For a connected graph  of order at least 2 and a nonempty set 

 

W

 

 of vertices in 

 

G

 

, the
Steiner distance  is the minimum size of a connected subgraph of 

 

G

 

 containing 

 

W

 

. Each such
subgraph is a tree and is called a Steiner 

 

W

 

-tree. A set  is called a Steiner set of 

 

G

 

 if every ver-
tex of 

 

G

 

 is contained in a Steiner 

 

W

 

-tree of 

 

G

 

. The Steiner number  of 

 

G

 

 is the minimum cardi-
nality of its Steiner sets and any Steiner set of cardinality  is a minimum Steiner set of 

 

G

 

. A
Steiner set 

 

W

 

 in a connected graph 

 

G

 

 is called a minimal Steiner set if no proper subset of 

 

W

 

 is a
Steiner set of 

 

G

 

. The upper Steiner number  of 

 

G

 

 is the maximum cardinality of a minimal
Steiner set of 

 

G

 

. The upper Steiner numbers of certain classes of graphs are determined. Graphs 

 

G

 

 of
order 

 

p

 

 with  are characterized. It is shown that for positive integers 

 

r

 

, 

 

d

 

, and
, with , there exists a connected graph 

 

G 

 

of radius 

 

r

 

, diameter 

 

d

 

, and upper Steiner
number 

 

l

 

. It is also shown that for every two integers 

 

a

 

 and 

 

b

 

 such that , there exists a con-
nected graph 

 

G

 

 with  and .

 

1. Introduction

 

By a graph , we mean a finite, undirected, connected graph with no loop or multiple edge. The
order and size of 

 

G

 

 are denoted by 

 

p

 

 and 

 

q

 

 respectively. For basic graph theoretic terminology, we refer to

 

[1][2]

 

. For vertices 

 

x

 

 and 

 

y

 

 in a connected graph 

 

G

 

, the 

 

distance

 

  is the length of a shortest 

 

x

 

—

 

y

 

 path
in 

 

G

 

. It is known that the distance is a metric on the vertex set of 

 

G

 

. An 

 

x

 

—

 

y

 

 path of length  is called
an 

 

x

 

—

 

y

 

 

 

geodesic

 

. For a vertex 

 

v

 

 of 

 

G

 

, the 

 

eccentricity

 

  is the distance between 

 

v

 

 and a vertex farthest from

 

v

 

. The minimum eccentricity among the vertices of 

 

G

 

 is the 

 

radius

 

, , and the maximum eccentricity is
the 

 

diameter

 

, , of 

 

G

 

. For a nonempty set 

 

W

 

 of vertices in a connected graph 

 

G

 

, the 

 

Steiner distance

 

 of 

 

W

 

 is the minimum size of a connected subgraph of 

 

G

 

 containing 

 

W

 

. Necessarily, each such subgraph
is a tree and is called a 

 

Steiner tree

 

 with respect to 

 

W

 

 or a Steiner 

 

W

 

-tree. It is noted that  when
. The set of all vertices of 

 

G

 

 that lie on some Steiner 

 

W

 

-tree is denoted by . If ,
then 

 

W

 

 is called a 

 

Steiner set

 

 for 

 

G

 

. A Steiner set of minimum cardinality is a minimum Steiner set or simply
a 

 

s

 

-set of 

 

G

 

 and this cardinality is the 

 

Steiner number

 

, , of 

 

G

 

. The Steiner number of a graph was intro-
duced and studied in 

 

[3]

 

. When , every Steiner 

 

W

 

-tree in G is a 

 

u—v

 

 geodesic. Also,  is
equal to the set of all vertices lying in 

 

u—v

 

 geodesics, inclusive of 

 

u and v. Hence, Steiner trees, Steiner sets,
and Steiner numbers can be considered as extensions of geodesic concepts.

G V E,( )=
d W( )

W V⊆
s G( )

s G( )

s+ G( )

s+ G( ) p or p 1–=
l 2≥ r d 2r≤<

2 a b≤ ≤
s G( ) a= s+ G( ) b=

G V E,( )=

d x y,( )
d x y,( )

e v( )
rad G( )

diam G( )
d W( )

d W( ) d u v,( )=
W u v,{ }= S W( ) S W( ) V=

s G( )
w u v,{ }= S W( )
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For the graph G shown in Figure 1, 

,

, and 

are the only three s-sets of G, so that .

Two Steiner W1 trees in the graph G of Figure 1 are shown in Figure 2.

For a cut vertex v in a connected graph G and a component H of , the subgraph H and the vertex v,
together with all edges joining v to  is called a branch of G at v. An end block of G is a block containing
exactly one cut vertex of G. Thus, every end block is a branch of G. A vertex v is an extreme vertex of a graph
G if the subgraph induced by the neighbors of v is a complete graph. Throughout the following G denotes a
connected graph with at least two vertices.

The following theorems are used in the sequel.

Theorem 1.1 [3]: Each extreme vertex of a graph G belongs to every Steiner set of G. In
particular, each end vertex of G belongs to every Steiner set of G. �

Theorem 1.2 [3]: Every non-trivial tree with exactly k end vertices has Steiner number k.
�

Theorem 1.3 [3]: For a connected graph G,  if and only if . �

Theorem 1.4 [3]: Let G be a connected graph of order .
Then  if and only if G contains a cut vertex of degree . �

2. The Upper Steiner Number of a Graph

Definition 2.1: A Steiner set W in a connected graph G is called a minimal Steiner set if no
proper subset of W is a Steiner set of G. The upper Steiner number  of G is the max-
imum cardinality of a minimal Steiner set of G. �

Example 2.2: For the graph G shown in Figure 3 (left),  and  are the
only two s-sets, so that . Also,  is a minimal Steiner set of G. It is easily ver-
ified that no 5-element subset of V is a minimal Steiner set, hence, .

Figure 1: Graph G

W1 v1 v4 v5, ,{ }=

W2 v2 v4 v7, ,{ }=

W3 v3 v5 v7, ,{ }=

s G( ) 3=

Figure 2: Two Steiner W1 trees in graph G.

G v–
V H( )

s G( ) p= G K p≅

p 3≥
s G( ) p 1–= p 1–

s+ G( )

W1 v1 v3 v4, ,{ }= W2 v1 v3 v5, ,{ }=
s G( ) 3= W v2 v4 v5 v6, , ,{ }=

s+ G( ) 4=

Figure 3:
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For the graph G shown in Figure 3 (right), , , , and
 are minimum Steiner sets of G so that .

Also , , , ,
and  are minimal Steiner sets of G, so that . It is easily verified that no
6-element subset and no 7-element subset of V is a minimal Steiner set of G, and thus .

Remark 2.3: Every minimum Steiner set of G is a minimal Steiner set of G, but the converse is not true. For
the graph G shown in Figure 3 (left),  is a minimal Steiner set but not a minimum
Steiner set of G.

Theorem 2.4: For a connected graph G of order p, .

Proof: Since any Steiner set needs at least two vertices, . Let W be a minimum Steiner set of G, so
that . Since W is also a minimal Steiner set of G, it is clear that . Since G is
a connected graph of order at least two, it contains a spanning tree and thus V is always a Steiner set for G.
Hence, . Thus, . �

Remark 2.5: By Theorem 1.2, for any non-trivial tree T, the set of all end vertices of T is the unique minimum
Steiner set of T and thus . It follows from Theorem 1.3 that  for the complete graph
K2 and that  for the complete graph Kp ( ). Thus, the bounds in Theorem 2.4 are sharp.

Also, for the graph shown in Figure 2 (left),  and  so that strict inequality can hold in
Theorem 2.4.

Theorem 2.6: For a connected graph G of order p,  if and only if .

Proof: Let . Then V is the unique minimal Steiner set of G. Since no proper subset of V is a Steiner
set, it is clear that V is the unique minimum Steiner set of G and hence . The converse follows from
Theorem 2.4. �

Corollary 2.7: For a connected graph G of order p, the following statements are equivalent:
(1) ,
(2) , and
(3)  ( ).

Proof: The statement follows from Theorem 1.3 and Theorem 2.6. �

Theorem 2.8: Let G be a connected graph with v a cut vertex of G and let W be 
a Steiner set of G. Then every component of  contains an element of W.

Proof: Let v be a cut vertex of G and W a Steiner set of G. Suppose that there exists a component, say G1 of
 such that G1 contains no vertex of W. By Theorem 1.1, W contains all the extreme vertices of G and it

follows that G1 does not contain any extreme vertex of G. Thus, G1 contains at least one edge, say xy. Since
every Steiner W-tree T must have its end vertices in W and v is a cut vertex of G, it is clear that vertices x and
y do not lie on any Steiner W-tree of G. This contradicts that W is a Steiner set of G. �

Corollary 2.9: If v is a cut vertex of a connected graph G and W is a Steiner set of G,
then v lies in every Steiner W-tree of G. �

Corollary 2.10: Let G be a connected graph with cut vertices and let W be 
a Steiner set of G. Then, every branch of G contains an element of W. �

Corollary 2.11: If G is a connected graph with  end blocks, then . �

Theorem 2.12: No cut vertex of a connected graph G belongs to any 
minimal Steiner set of G.

Proof: Suppose that there exists a minimal Steiner set W that contains a cut vertex v of G. Let G1, G2, …, Gr
( ) be the components of . By Theorem 2.8, each component Gi ( ) contains an element
of W. We claim that  is also a Steiner set of G. Since v is a cut vertex of G, by Corollary 2.9,
each Steiner W-tree contains v. Now, since , it follows that each Steiner W-tree is also a Steiner W′-tree
of G. Thus, W is a Steiner set of G such that , which is a contradiction to W is a minimal Steiner set
of G. Hence, the theorem. �

S1 v1 v4 v5, ,{ }= S2 v1 v2 v5, ,{ }= S3 v2 v5 v6, ,{ }=
S4 v2 v3 v6, ,{ }= s G( ) 3=

W1 v3 v4 v7 v8, , ,{ }= W2 v1 v,
3

v5 v6, ,{ }= W3 v3 v2 v4 v6, , ,{ }= W4 v2 v3 v5 v7 v8, , , ,{ }=
W5 v2 v4 v5 v7 v8, , , ,{ }= s+ G( ) 5≥

s+ G( ) 5=

W v2 v4 v5 v6, , ,{ }=

2 s G( ) s+ G( ) p≤ ≤ ≤
s G( ) 2≥

s G( ) W= s+ G( ) W≥ s G( )=

s+ G( ) p≤ 2 s G( ) s+ G( ) p≤ ≤ ≤

s T( ) s+ T( )= s G( ) 2=
s+ G( ) p= p 2≥

s G( ) 3= s+ G( ) 4=

s G( ) p= s+ G( ) p=

s+ G( ) p=
s G( ) p=

s G( ) p=
s+ G( ) p=
G K p≅ p 2≥

G v–

G v–

k 2≥ s+ G( ) k≥

r 2≥ G v– i 1 … r, ,=
W′ W v{ }–=

v W′∉
W′ W⊆
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Corollary 2.13: For any tree T with k end vertices, .

Proof: This follows from Theorems 1.1 and 2.12. �

Theorem 2.14: For a complete bipartite graph ,

(1)  if .

(2)  if  and .

(3)  if .

Proof: Statements (1) and (2) follow from Corollary 2.13.

To prove statement (3), first assume that . Let  and  be a
bipartition of . Let . We prove that W is a minimal Steiner set of G.

Any Steiner W-tree T is a star centered at each xi (  with yj ( ) as the end vertices of T. Hence,
every vertex of G lies on a Steiner W- tree, so that W is a Steiner set of G. Let . Then there exists a
vertex  such that . Since every Steiner W ′-tree is a star centered at xi ( ) whose end
vertices are elements of W′, the vertex yj does not lie on any Steiner W ′-tree and thus W′ is not a Steiner set
of G. This shows that W is a minimal Steiner set of G. Hence, . It can be proved similarly that

 is also a minimal (in fact, minimum) Steiner set of G.

Let S be any minimal Steiner set of G such that . Hence, S is neither contained in X nor in Y. Fur-
thermore, since X and Y are (minimal) Steiner sets of G, it follows that S contains neither X nor Y. Hence, there
exist vertices  ( ) and  ( ) such that  and . Because the subgraph
induced by S is connected, it follows that any Steiner S-tree contains only the vertices of S. Thus, vertices xi
and yj do not lie on any Steiner S-tree of G, so that S is not a Steiner set of G, which is a contradiction. Thus,
any minimal Steiner set of G contains at most n elements, and hence, . Consequently, .
For , it can be proved similarly that . �

Theorem 2.15: If G is a connected, non-complete graph of order p, with no cut vertex,
then .

Proof: Suppose that . Then . If , then from Corollary 2.7 G is
complete, which is a contradiction. Therefore, . Let v be a vertex of G such that 
is a minimal Steiner set of G. Since v is not a cut vertex of G, then  is connected. Hence, S is not a Steiner
set of G, which is a contradiction. Thus, . �

Remark 2.16: The bound in Theorem 2.15 is sharp. For a complete bipartite graph  ( ), it follows
from Theorem 2.14 that .

Theorem 2.17: For a connected graph G,  if and only if .

Proof: Let . Then it follows from Theorem 2.4 that . If , then
by Theorem 2.6, ,  which is a contradiction. Hence, .  Conversely, let

. Then it follows from Corollary 2.7 that G is a non-complete graph. Hence, by Theorem 2.15,
G contains a cut vertex, say v. Since , it follows from Theorem 2.12 that  is the
unique minimal Steiner set of G. Since every minimum Steiner set is also a minimal Steiner set of G, we see
that . �

Theorem 2.18: Let G be a connected graph of order . Then the following statements
are equivalent:
(1) .
(2) .
(3) G contains a cut vertex of degree .

Proof: This follows from Theorems 1.4 and 2.17. �

3. Realization Results

For every connected graph, . Ostrand [4] showed that every two positive inte-
gers a and b, with  are realizable as the radius and diameter, respectively, of some connected graph.
Ostrand’s theorem can be extended so that the upper Steiner number can also be prescribed, when .

s T( ) s+ T( ) k= =

Km n,
s+ Km n,( ) 2= m n 1= =

s+ Km n,( ) n= n 2≥ m 1=

s+ Km n,( ) max m n,{ }= m n, 2≥

m n< X x1 x2 … xm, , ,{ }= Y y1 y2 … yn, , ,{ }=
G Km n,≅ W Y=

1 i m≤ ≤ 1 j n≤ ≤
W ′ W⊂

y j W∈ y j W ′∉ 1 i m≤ ≤

s+ G( ) n≥
W X=

S n 1+≥

xi X∈ 1 i m≤ ≤ y j Y∈ 1 j n≤ ≤ xi S∉ y j S∉

s+ G( ) n≤ s+ G( ) n=
m n= s+ G( ) m n= =

s+ G( ) p 2–≤
s+ G( ) p 1–≥ s+ G( ) p 1–  or p= s+ G( ) p=

s+ G( ) p 1–= S V v{ }–=
S〈 〉

s+ G( ) p 2–≤
K2 n, n 2≥

s+ K2 n,( ) n=

s G( ) p 1–= s+ G( ) p 1–=

s G( ) p 1–= s+ G( ) p or p 1–= s+ G( ) p=
s G( ) p= s+ G( ) p 1–=

s+ G( ) p 1–=
s+ G( ) p 1–= S S v{ }–=

s G( ) p 1–=

p 3≥

s G( ) p 1–=
s+ G( ) p 1–=

p 1–

rad G( ) diam G( ) 2rad G( )≤ ≤
a b 2a≤ ≤

a b 2a≤ ≤
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Theorem 3.1: For positive integers r, d, and , with , their exists a connected
graph G with , , and .

Proof: When , let . Then  and, by Corollary 2.13, .

Now, let . We construct a graph G with the desired property as follows. Let :  be
a cycle of order 2r and let :  be a path of order . Let H be the graph
obtained from  and  by identifying v1 in  with u0 in . Now, add  new ver-
tices  to H and join each vertex wi ( ) to the vertex , and also join the
vertices vr and  to obtain the graph G as illustrated in Figure 4.

Then  and . Let  be the set of all extreme
vertices of G. By Theorem 1.1, W is a subset of every Steiner set of G. It is clear that W is a Steiner set of G
and it follows that W is the unique minimal Steiner set of G so that . �

In view of Theorem 2.4, the following theorem gives a realization for the Steiner number and the upper
Steiner number of a graph.

Theorem 3.2: For positive integers a and b, with , there exists a 
connected graph G such that  and .

Proof: If , let . Then, by Corollary 2.13, . If , let .
Let  and  be the bipartition of G. Any Steiner X-tree T of G is a star cen-
tered at each yj ( ) with x1 and x2 as end vertices of T and so X is a Steiner set of G. Since ,
it follows that X is a minimum Steiner set, so that . Also, by Theorem 2.14, .

If , let G be the graph, illustrated in Figure 5, obtained
from the path P on three vertices u1, u2, u3, by adding the new
vertices  and , and joining each
vi ( ) with u1 and u3, and also joining each wi
( ) with u1 and u2.

Let  be the set of extreme vertices of G.
Let S be any Steiner set of G. Then by Theorem 1.1, . It is clear
that W is not a Steiner set of G. Also, it is easily verified that

, where , is not a Steiner set of G. It is clear that
 is a Steiner set of G and so .

Now, let . Then it is clear that T
is a Steiner set of G. We show that T is a minimal Steiner set of G. Let
T′ be any proper subset of T. Then there exists at least one vertex, say

 such that .

If  for some i ( ), then by Theorem 1.1, T is not a
Steiner set of G. If  for some j ( ), then the
vertex vj does not lie on any Steiner T′-tree of G. Similarly, if ,
then the vertices u2 and u3 do not lie on any Steiner T′-tree of G. Thus
T′ is not a Steiner set of G. Hence, T is a minimal Steiner set of G, so
that .

Now, we show that there is no minimal Steiner set X of G with . Since G has  vertices and
T is a Steiner set of G with cardinality b, it follows that V is not a minimal Steiner set of G. Suppose that there
exists a minimal Steiner set X such that . Now, if , then it is clear that u3 is not contained
in any Steiner X-tree and so X is not a Steiner set of G, which is a contradiction. If , then, since T is a

l 2≥ r d 2r≤ ≤
rad G( ) r= diam G( ) d= s+ G( ) l=

r 1= G K1 l,≅ d 2= s+ G( ) l=

r 2≥ C2r v1 v2 … v2r v1, , , ,
Pd r– 1+ u0 u1 u2 … ud r–, , , , d r– 1+

C2r Pd r– 1+ C2r Pd r– 1+ l 2–( )
w1 w2 … wl 2–, , , 1 i l 2–≤ ≤ ud r– 1–

vr 2+

Figure 4:

rad G( ) r= diam G( ) d= W vr 1+ w1 w2 … wl 2– ud r–, , , , ,{ }=

s+ G( ) l=

2 a b≤ ≤
s G( ) a= s+ G( ) b=

a b= G K1 a,≅ s G( ) s+ G( ) a= = 2 a b<= G K2 b,≅
X x1 x2,{ }= Y y1 y2 … yn, , ,{ }=

1 j n≤ ≤ X 2=
s G( ) 2 a= = s+ G( ) b=

Figure 5:

2 a b< <

v1 v2 … vb a– 1+, , , w1 w2 … wa 2–, , ,
1 i b a– 1+≤ ≤

1 i a 2–≤ ≤
W w1 w2 … wa 2–, , ,{ }=

W S⊆

W v{ }∪ v W∉
W u1 u3,{ }∪ s G( ) a=

T W v1 v2 … vb a– 1+ u3, , , ,{ }∪=

u T∈ u T′∉
u wi= 1 i a 2–≤ ≤

u v j= 1 j b a– 1+≤ ≤
u u3=

s+ G( ) T≥ b=

X b 1+≥ b 2+

X b 1+= u3 X∉
u3 X∈
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Steiner set of cardinality b and X is minimal, there exists exactly one vertex vi ( ) such that
. It is now clear that vi is not contained in any Steiner X-tree, and therefore, X is not a Steiner set of G,

which is a contradiction. Thus, there is no minimal Steiner set X of G with . Hence, .
�

Remark 3.3: The graph G shown in Figure 5 contains precisely two minimal Steiner sets, viz:

 and .

Hence, this example shows that there is no intermediate value theorem for minimal Steiner sets. That is, if k
is an integer such that , then there need not exist a minimal Steiner set of cardinality k in G.

Using the structure of the graph G constructed in the proof of Theorem 3.2, we can obtain a graph Gn of order
n with  and  for all . This suggests the following theorem.

Theorem 3.4: There is an infinite sequence  of connected graphs Gn of order 
such that , ,  and .

Proof: 

Let Gn be the graph, illustrated in Figure 6, obtained from the path P:
 of length 2, by adding the new vertices v1, v2, , and

w1, and joining each vi ( ) with u1 and u3, and also joining
w1 with u1 and u2.

Let  and . It is clear from
the proof of Theorem 3.2 that the graph Gn contains precisely two
minimal Steiner sets, namely

 and ,

so that  and .

Hence, the result follows. �

References 
[1] F. Harary; Graph Theory, Addison–Wesley (1969).

[2] F. Buckley and F. Harary; Distance in Graphs, Addison–Wesley, Redwood City (1990).

[3] G. Chartrand, F. Harary, and P. Zhang; The Steiner number of a graph, Discrete Mathematics, 242, 41–54 (2002).

[4] A. Ostrand; Graphs with specified radius and diameter, Discrete Mathematics, 4, 71–75 (1973).

Received: March 9, 2010

1 i b a– 1+≤ ≤
vi X∉

X b 1+≥ s+ G( ) b=

W u1 u3,{ }∪ T W v1 v2 …vb a– 1+ u3, , ,{ }∪=

s G( ) k s+ G( )< <

s Gn( ) 3= s+ Gn( ) n 1–= n 5≥

Gn{ } n 5≥
s Gn( ) 3= s+ Gn( ) n 1–= s Gn( ) n⁄

n ∞→
lim 0= s+ Gn( ) n⁄

n ∞→
lim 1=

Figure 6:

u1 u2 u3, , vn 3–
1 i n 3–≤ ≤

W w1{ }= T w1 v1 v2 … vn 3– u3, , , , ,{ }=

w1 u1 u3, ,{ } w1 v1 v2 … vn 3– u3, , , , ,{ }
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Abstract
We investigate various results concerning pebbling numbers and optimal pebbling numbers of a con-
nected graph. We imagine discrete pebbles placed on the vertices of a graph. We allow pebbling
moves in which two pebbles are removed from some vertex, and one pebble is added to an adjacent
vertex. The pebbling number of a graph is the smallest number of pebbles required to ensure that no
matter how they are originally placed, we can reach every vertex by a sequence of pebbling moves.
The optimal pebbling number of a graph is the smallest number of pebbles for which some placement
allows us to reach every vertex. We also discuss Graham’s conjecture, which asserts that the pebbling
number of a Cartesian product is at most the product of the pebbling numbers of the graphs in that
product.

1. Basic Notions

For a graph , a function  is called
a distribution on the vertices of G, or a distribution on G.
We usually imagine that  pebbles are placed on v for
each vertex . For example, Figure 1 shows a distri-
bution of pebbles on P4, the path with four vertices.

A pebbling move in G consists of removing two pebbles from a vertex  that contains at least two peb-
bles, moving one of these pebbles onto a neighbor of v, and discarding the other. For example, from the dis-
tribution shown in Figure 1, we could make two pebbling moves from v1 to v2. We would then have two
pebbles on v2 (and two pebbles remaining on v1). We could then move a second pebble onto v3, and from
there, we could move a pebble onto v4. Therefore, from this distribution of seven pebbles, it is possible to
reach every vertex in P4. However, if we start with all seven pebbles placed on v1, it would be impossible to
move a pebble onto v4.

Let  denote the size of the pebble function D; that is, . For two distributions D and D′
on G, we say that D contains D′ if  for all . For two distributions D1 and D2, we say that
D2 is reachable from D1 if there is some sequence of pebbling moves beginning with D1 and resulting in a dis-
tribution that contains D2. We say the distribution D is solvable, (respectively, t-solvable), if every distribu-
tion with one pebble (respectively, t pebbles) on a single vertex is reachable from D.

The traditional pebbling number, and t-pebbling number of a graph G, denoted by  and , respec-
tively, were defined by Chung [1].The optimal pebbling number and optimal t-pebbling number of G, denoted
by  and , respectively, were defined by Pacther, Snevily, and Voxman [2]. We give those defi-
nitions now.

Definitions [1][2]: The t-pebbling number of a graph G, denoted by , is the smallest
number such that every distribution with  is t-solvable. The optimal t-pebbling
number of G, denoted by , is the smallest number such that some distribution with

 pebbles is t-solvable. In both cases we omit the t when . Thus, the pebbling
number of G is  and the optimal pebbling number of G is .

�

Figure 1: A distribution of pebbles on P4.

G V E,( )= D: V �→

D v( )
v V∈

v V∈

D D Σv V∈ D V( )=
D′ v( ) D v( )≤ v V∈

π G( ) πt G( )

π* G( ) πt
* G( )

πt G( )
D πt G( )≥

πi
* G( )

πt G( ) t 1=
π G( ) π1 G( )= π* G( ) π1

* G( )=



16 Graph Theory Notes of New York LIX (2010)

We leave the reader to verify that  and . Note the following basic result.

Proposition 1.1: For any graph G with n vertices and diameter , 
and .

Proof: Placing one pebble on every vertex creates a solvable distribution, thus . Placing one pebble
on every vertex except for some vertex v creates an unsolvable distribution with  pebbles: v is unreach-
able because no move is possible. Therefore, . Similarly, placing  pebbles on any vertex v cre-
ates a solvable distribution, but if the distance from v to w is , placing  pebbles on v gives a
distribution from which w is unreachable. Therefore, . �

2. Graham’s Conjecture

Graham’s conjecture asserts a bound on the pebbling number of the Cartesian product of two graphs.

Definition: If  and  are two graphs, their Cartesian product is
the graph  with vertex set:

and whose edge set is:

. �

To provide examples, Figure 2 shows a graph G together with the products  and , where Kn
represents the complete graph on n vertices. We also write Gd for the graph , the product of
d copies of G.

Chung [1] attributed the following conjecture to Graham.

Conjecture 2.1 (Graham’s Conjecture): For graphs G and G′, .
�

Conjecture 2.2 is a generalization of Conjecture 2.1.

Conjecture 2.2: For any multiset of graphs ,

. �

Conjectures 2.1 and 2.2 appear very difficult to resolve in general, but they have been proved for some spe-
cific graphs.

Theorem 2.3 [1][3][4]: For a multiset of graphs , if every Gi is a com-
plete graph, a tree, or a cycle, and at most two of the Gi are 5-cycles, then Conjecture 2.2
holds. That is, . �

π P4( ) 8= π* P4( ) 3=

D G( ) π* G( ) n π G( )≤ ≤
π* G( ) 2D G( ) π G( )≤ ≤

π* G( ) n≤
n 1–

π G( ) n≥ 2D G( )

D G( ) 2D G( ) 1–
π* G( ) 2D G( ) π G( )≤ ≤

G V E,( )= G′ V′ E′,( )=
G G′×

V G G′×( ) V V′× x x′,( ) : x V∈ x′ V′∈,{ }= =

E G G′×( ) x x′,( ) y x′,( ),( ) : x y,( ) E∈{ } x x′,( ) x y′,( ),( ) : x′ y′,( ) E′∈{ }∪=

G K2× G K3×
G G …× G××

Figure 2: Cartesian products.

π G G′×( ) π G( )π G′( )≤

G1 G2 … Gk, , ,{ }

π G1 G2× …× Gk×( ) π G1( )π G2( )…π Gk( )≤

G1 G2 … Gk, , ,{ }

π G1 G2× …× Gk×( ) π G1( )π G2( )…π Gk( )≤
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Cartesian products involving C5 turn out to be difficult to work with. It is known (from [5]) that 
and , but it has turned out to be difficult to verify the following conjecture, due to Chung
[1].

Conjecture 2.4 [1]:  and . �

3. Two-Pebbling Properties

It is natural to ask at this point whether it is possible to say anything at all, in general, about Graham’s con-
jecture. For example, it is easy to see that  for any positive integer n. Is it possible to guarantee that

 for any graph G? The answer, in general, is no, but we can guarantee this for any graph
that satisfies one of two possible two-pebbling properties.

To motivate a description of these properties, we ask how might we prove inductively that
. Assume that . Further assume the inductive hypothesis that
 when  (the base case  is trivial). Suppose we have an arbitrary distribution

of  pebbles on . We may assume, without loss of generality, that the target vertex is 
for some . Suppose we try to transfer  pebbles onto the vertices of the form ,
with . Denote these vertices by . We transfer as many pebbles as possible
from each  to . Unfortunately, if  has an odd number of pebbles, we must leave a pebble
behind.

These ideas motivate the following notation: given a distribution  with , let
pi be the number of pebbles on  and let ri be the number of vertices in  with an odd
number of pebbles. Then, by transferring pebbles from each  to , we can ensure a total of

 pebbles on . If it is not possible to reach the
target  from there, it must be the case that . Since
we started with  pebbles on the graph, this would mean that 
or equivalently, . From these distributions, we try to move two pebbles onto . If we
succeed, we could then move a pebble onto , as desired. The two-pebbling properties are designed to
allow this approach to succeed when the first strategy fails. Chung [1] first defined the two-pebbling property
and Wang [6] defined the odd two-pebbling property.

Definitions [1][6]: Given a distribution of pebbles on the vertices of a graph G, let
, let q be the number of occupied vertices in G, and let r be the number of vertices

with an odd number of pebbles. We say G satisfies the two-pebbling property if it is possible
to move two pebbles to any vertex of G by a sequence of pebbling moves whenever

. We say G satisfies the odd two-pebbling property if it is possible to move
two pebbles to any vertex of G by a sequence of pebbling moves whenever .

�

The previous argument shows that if G satisfies the odd two-pebbling property, then  satisfies Gra-
ham’s conjecture, . Theorem 3.1 offers a few more examples of products
that satisfy Graham’s conjecture.

Theorem 3.1: If G satisfies the odd two-pebbling property, then 
provided H is a complete graph, a complete bipartite graph, a tree, or an even cycle graph.

�

Note that if G satisfies the two-pebbling property, it automatically satisfies the odd two-pebbling property: if
, then . Therefore, if G satisfies the two-pebbling property, two pebbles

can be moved to any vertex. The following conjecture asserts the converse.

Conjecture 3.2: G satisfies the two-pebbling property if and only if it satisfies the odd two-
pebbling property. �

Many graphs satisfy at least the odd two-pebbling property.

Theorem 3.3 [1]–[3]: G satisfies the odd two-pebbling property if the diameter of G is at
most two (e.g., complete graphs and complete bipartite graphs), or if G is a tree or a cycle.

�

π C5( ) 5=
π C5 C5×( ) 25=

π C5 C5× C5×( ) 125= π C5
d( ) 5d=

π Kn( ) n=
π G Kn×( ) nπ G( )≤

π G Kn×( ) nπ G( )≤ V Kn( ) v1 v2 … vn, , ,{ }=
π G Km×( ) mπ G( )≤ m n< n 1=

nπ G( ) G Kn× x0 v1,( )
x0 V G( )∈ n 1–( )π G( ) x vi,( )

i n 1–≤ V G( ) v1 v2 … vn 1–, , ,{ }×
x vn,( ) x v1,( ) x vn,( )

D: V G Kn×( ) �→ D nπ G( )=
V G( ) vi{ }× V G( ) vi{ }×

x vn,( ) x v1,( )
p1 p2 … pn 1– pn rn–( ) 2⁄+ + + + V G( ) v1 v2 … vn 1–, , ,{ }×

x0 v1,( ) p1 p2 … pn 1– pn rn–( ) 2⁄+ + + + n 1–( )π G( )<
p1 p2 … pn+ + + nπ G( )= pn rn+( ) 2⁄ π G( )>
pn rn+ 2π G( )> x0 vn,( )

x0 v1,( )

p D=

p q+ 2π G( )>
p r+ 2π G( )>

G Kn×
π G Kn×( ) π G( )π Kn( )≤ nπ G( )=

π G H×( ) π G( )π H( )≤

p r+ 2π G( )> p q p r 2π G( )>+≥+
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A natural question to ask is whether any graph does not satisfy
these properties. We call such a graph a Lemke graph, in honor of
Paul Lemke who discovered the example L shown in Figure 3. It
takes some effort, but one can verify that . However,
for the given distribution, we have  and , but
two pebbles cannot be moved to v. Lemke graphs are thought to
be the most likely candidates for counterexamples to Graham’s
conjecture. It would be interesting to verify the following conjec-
ture.

Conjecture 3.4: If L is the Lemke graph shown in 
Figure 3, then . �

4. A Generalization of Graham’s Conjecture

We can generalize what we allow as the target distributions, with-
out insisting that all pebbles have to be on the same vertex. This
gives us more general versions of pebbling numbers.

Definitions: If D is any distribution of pebbles on the vertices of the graph G, we say the
distribution D′ is D-solvable if it is possible to go from D′ to a distribution that contains D
by a sequence of pebbling moves. We then define  as the smallest number such that
every distribution of  pebbles on G is D′-solvable. Similarly, if S is a set of distri-
butions of pebbles on G, we define  as the smallest number such that every distri-
bution of  pebbles on G is D-solvable for every . We also define  to
be the smallest number such that some distribution of  pebbles on G is D-solvable
for every . �

In particular, if we define  as the set of distributions with t pebbles on a single vertex, then 
=  and . For a single distribution D,  is not interesting; since D is
D-solvable, and trivially .

To generalize Graham’s conjecture, we generalize products to work with sets of distributions.

Definitions: Given distributions  and  on the vertices of
graphs G and H, respectively, we define  as the distribution on

 given by .
If SG and SH are sets of distributions on G and H, respectively, we define  as the
set of distributions on  given by . �

Figure 4 illustrates an example of the product of a distribution on the graph G from Figure 2 and a distribution
on K2.

Figure 3: The Lemke graph L.

π L( ) 8=
p 13= q r 5= =

π L L×( ) 64=

π G D,( )
π G D,( )

π G S,( )
π G S,( ) D S∈ π* G S,( )

π G S,( )
D S∈

St G( ) π G St G( ),( )
πt G( ) π* G St G( ),( ) πt

* G( )= πt
* G( )

π* G D,( ) D=

DG: V G( ) �→ DH : V H( ) �→
DG DH⋅ : V G H×( ) �→

G H× DG DH⋅( ) v w,( )( ) DG v( )DH w( )=
SG SH⋅

G H× SG SH⋅ DG DH⋅  : DG SG∈ DH SH∈,{ }=

Figure 4: An example of product distribution.
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We can now generalize Conjecture 2.1 as follows:

Conjecture 4.1: For any graphs G and H, and any sets of distributions SG and SH on the
vertices of G and H, respectively,

. �

Note that if  and , then , hence with this choice of distri-
butions, we obtain Graham’s conjecture precisely.

Obviously, Conjecture 4.1 is very difficult for regular pebbling. However, the analog for optimal pebbling
follows relatively easily from the following nontrivial observations.

Observations: If we are able to get from the distribution  to D1 in G by a sequence of pebbling moves and
we can get from  to D2 in H, then we can get from  to  to  in  by a
sequence of pebbling moves. In particular, if we can get from DG to every distribution in SG, and we can get
from DH to every distribution in SH, then we can get from  to every distribution in .

Since , Theorem 4.2 follows from the above observations. This theorem generalizes
a result from Shiue [7] that .

Theorem 4.2 [8]: For any graphs G and H, and any sets of distributions SG and SH on the
vertices of G and H, respectively, then . �

Thus, for optimal pebbling, an analog of Graham’s conjecture holds in a very general setting.

5. Some Solvable Distributions

In this section, we construct solvable distributions for hypercubes and for Cartesian products of C5. These
are not optimal distributions, at least not for large products, but they are better then previously known
distributions.

5.1. Solvable Distributions on Hypercubes

Write Qd for the d-dimensional hypercube, , and label the vertices of Qd by bitstrings. Given a vertex
 and a bit , let  be the vertex in  obtained by appending b to the bitstring for v.

Moews [9] proved the following theorem, which gives the best known bound on the optimal pebbling number
of hypercubes.

Theorem 5.1 [9]:  for some constant k. �

Moews proof, however, was probabilistic; he did not construct explicit distributions. It also does not tell us
anything when d is small. The best previously constructed distributions are given in the following theorem,
obtained by Pachter, Snevily, and Voxman [2].

Theorem 5.2 [2]: If , then putting 2k pebbles each on the vertices  and
 gives a solvable distribution on Qd. If , then putting  pebbles on
 and putting 2k pebbles on  gives a solvable distribution on Qd. �

We call the distributions in Theorem 5.2 antipodal distributions, and write Ad for the antipodal distribution on
Qd. The number of pebbles required by Ad is in . We inductively extend the antipodal
distributions to produce solvable distributions with fewer pebbles by using the following definition:

Definition: Let  be a distribution of pebbles on Qd, and for each ,
let . Then construct a distribution  as follows:

• If , let .

• If , let .

• If , let  and .

We write  for the distribution on  obtained by applying this construction
m times. �

Note that in each case, we can put pi pebbles on  for each . In particular, if D is solvable in
Qd, then  is solvable in . Note further that  if each pi is sufficiently large. Unfortu-
nately, this requirement that pi must be sufficiently large limits our ability to repeatedly improve the bound by

π G H× SG SH⋅,( ) π G SG,( )π H SH,( )≤

SG S1 G( )= SH S1 H( )= SG SH⋅ S1 G H×( )=

D1′
D2′ D1′ D2′⋅ D1′ D2⋅ D1 D2⋅ G H×

DG DH⋅ SG SH⋅
DG DH⋅ DG DH=

πst
* G H×( ) πs

* G( )πt
* H( )≤

π* G H× SG SH⋅,( ) π* G SG,( )π* H SH,( )≤

Qd K2
d≅

v Qd∈ b 0 1,{ }∈ v b⋅ Qd 1+

π* Qd( ) 4
3
---⎝ ⎠

⎛ ⎞ d O dlog( )+
∈ O 4

3
---

d
dk

⎝ ⎠
⎛ ⎞=

d 2k= 00…0
11…1 d 2k 1+= 2k 1+
00…0 11…1

Θ 2n( ) Θ 1.4142n( )≈

D: V Qd( ) �→ vi V Qd( )∈
pi D vi( )= ρ D( ): V Qd 1+( ) �→

pi 3k= ρ D( )( ) vi 0⋅( ) ρ D( )( ) vi 1⋅( ) 2k= =

pi 3k 1+= ρ D( )( ) vi 0⋅( ) ρ D( )( ) vi 1⋅( ) 2k 1+= =

pi 3k 2+= ρ D( )( ) vi 0⋅( ) 2k 2+= ρ D( )( ) vi 1⋅( ) 2k 1+=

pm D( ) Qd m+

vi b⋅ b 0 1,{ }∈
ρ D( ) Qd 1+ ρ D( ) 4

3
--- D≈



20 Graph Theory Notes of New York LIX (2010)

a factor of 4/3, but if we start with a sufficiently large antipodal distribution, a careful analysis, conducted in
[8] gives the following result.

Theorem 5.3 [8]: Given an integer d, let

, and let .

Then the distribution  on  satisfies

. �

5.2. Solvable Distributions on 

Moews [9] generalized Theorem 5.1 to apply to all graphs. In particular, applying it to C5 gives the following
theorem:

Theorem 5.4 [9]:  for some constant k. �

This theorem gives the best known bound on the optimal pebbling number involving products of C5, but it
suffers from the same drawbacks as Theorem 5.1. It does not construct explicit distributions and it does not
tell us anything for small values of d. The first explicit distributions for  were given in [5]. They were
based on the partition of  implied by the boldfaced edges shown in Figure 5.

In Figure 5, the edges wrap around from the left side to the right side, and from the top to the bottom. The main
observation is that if we place four pebbles each on the vertices represented by dark circles, the resulting dis-
tribution is 4-solvable. For example, if the target is , we can move two pebbles there from 
and one pebble each from  and , and by symmetry, every unoccupied vertex can be reached
similarly. We call this Distribution B, and we use B in Theorem 5.5, from [5].

Theorem 5.5 [5]: Let G be any graph and let D be a t-solvable distribution on G in which
the number of pebbles on every vertex is a multiple of four. Then, the distribution  is
a t-solvable distribution in  in which the number of pebbles on every vertex
is a multiple of four. Note that the number of pebbles in  is . In particular, by
induction on k, we have . �

Starting with , let D be the 1-solvable distribution with four pebbles on a single vertex. Then
. For even products , a solvable distribution on  was given in [8] in which eleven

vertices each have four pebbles, and no other vertices are occupied (the bound  is achieved
separately). In particular, the following theorem provides an explicit bound on .

k
log21.5

log24.5
------------------ d 1–( ) 0.2696 d 1–( )≈= m d 1– 2k– 0.4608 d 1–( )≈=

ρm A2k 1+( ) Q2k m 1+ + Qd=

ρm A2k 1+( ) O 2m( ) O 1.3763d( )≈∈

C5
d

π* C5
d( ) 2d O dlog( )+∈ O 2ddk( )=

C5
d

C5 C5×

Figure 5: A partition of C5�C5.

v0 v1,( ) v0 v0,( )
v3 v1,( ) v1 v2,( )

B D⋅
C5 C5×( ) G×

B D⋅ 5 D
πi

* C5
2k

G×( ) 5k D≤

G C5≈
π* C5

2k 1+
( ) 4 5k⋅≤ C5

2k
C5

4

π* C5 C5×( ) 8≤
π* C5

d( )
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Theorem 5.6 [8]:  and . Thus, for all  

. �
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Abstract
A marked signed graph is an ordered pair , where  is a sigraph and

 is a function from the vertex set  of Su into the set , called a mark-
ing of S. A cycle Z in Sμ is said to be consistent if it contains an even number of negatively marked
vertices. A sigraph S is consistent if every cycle in S is consistent. In particular, σ induces a unique
marking  defined by , where Ev is the set of edges incident on v in S, and is
called the canonical marking of S. In this paper, we characterize canonically consistent line sigraphs
and canonically consistent ×-line sigraphs, the latter being a variation of the standard notion of a line
sigraph.

1. Introduction

A signed graph (or sigraph) is an ordered pair , where  is a graph, called the under-
lying graph of S and  is a function from the edge set E of Su into the set  called the sig-
nature of S. Let  and . The elements of

 and  are called positive and negative edges of S, respectively. For standard terminology and
notation in graph theory see Harary [1] and West [2]. For sigraphs see Zaslavsky [3][4]. Throughout this
paper graphs are finite with no loop or multiple edge.

A sigraph S is called regular if the number of positive edges, , incident on a vertex v in S and the number
of negative edges,  incident on v, are the same for all vertices in S, with  and  not necessarily
equal. The numbers  and  are called the positive and negative degrees of v in S, respectively. For
a regular sigraph S, the degree of S is the pair .

The edge degree  of an edge ej in a sigraph S is the total number of edges adjacent to ej in S. The positive
(negative) edge degree,  ( ) of edge ej in S is the total number of positive (negative) edges adja-
cent to ej. The negation  of a sigraph S is a sigraph obtained from S by negating the sign of every edge
of S. Thus, to obtain , change the sign of every edge of S to its opposite.

An alternating sequence of vertices and edges of S, beginning and terminating with vertices, in which all the
vertices are distinct, is called a path in S. The length of a path is defined to be the number of edges contained
in the path. A path containing precisely n edges, is called an n-path. If all the edges in a path are negative, then
the path is called an all-negative path. A negative section (see [5]) of a subsigraph S′ of a sigraph S is a max-
imal edge-induced connected subsigraph in S consisting of only the negative edges of S. The length of a neg-
ative section is the number of negative edges it contains.

For a sigraph S, Behzad and Chartrand [6] defined its line sigraph  as the sigraph in which the edges of
S are represented by vertices with two vertices adjacent in  whenever the corresponding edges in S share
a common vertex. An edge ef in  is defined to be negative whenever both e and f are negative edges in
S. In [7][8], the authors introduced a variation of the standard notion for the line sigraph  of a given
sigraph S:  is a sigraph defined on the line graph  of the graph Su by assigning to each edge ef of

 the product of signs of the adjacent edges e and f of S.  is called the  ×-line sigraph of S.

Sμ S μ,( )= S Su σ,{ }=
μ: V Su( ) + –,{ }→ V Su( ) + –,{ }

μσ μσ v( ) Πe j Ev∈ σ e j( )=

S Su σ,( )= Su V E,( )=
σ: E + –,{ }→ + –,{ }

E+ S( ) e E S( ) : ∈ σ e( ) +={ }= E– S( ) e E S( ) : ∈ σ e( ) –={ }=
E+ S( ) E– S( )

d+ v( )
d– v( ) d+ v( ) d– v( )

d+ v( ) d– v( )
d+ v( ) d– v( ),( )

de e j( )
de

+ e j( ) de
– e j( )

η S( )
η S( )

L S( )
L S( )

L S( )
L S( )

L× S( ) L Su( )
L Su( ) L× S( )



D. Sinha and P. Garg: Canonical consistency of signed line structures 23

A sigraph  is -marked if there exists a sigraph , a bijection  →
, a binary relation R on , and a marking  of  satisfying the following

compatibility conditions:

(1) ,

(2) , .

Furthermore, S1 is -consistent if the following condition is satisfied:

(3) , for every cycle Z in S1.

The case when R is defined by the condition  is treated in Sinha [9] in a study of
signed graph equations involving signed line graphs. In this particular case, the terms -marked and

-consistent will be simplified to S2-marked and S2-consistent, respectively. In particular, σ induces
a unique marking , called the canonical marking of S, defined by

where Ev is the set of edges incident on v in S.

If every vertex of a sigraph S is canonically marked, then a cycle Z in S is said to be canonically consistent if
Z has an even number of negatively marked vertices. A sigraph S is said to be canonically consistent if every
cycle in S is canonically consistent.

2. Canonically Consistent Line Sigraphs

Beineke and Harary [10][11] were the first to pose the problem of characterizing consistent marked graphs.
This question was subsequently settled by Acharya [12][13] and by Hoede [14]. Acharya and Sinha obtained
S-consistency of line sigraphs in [9][15]. In this section, we obtain a characterization of canonically consis-
tent line sigraphs.

The following theorem by Hoede plays an important role in solving this problem.

Theorem 1 [14]: A marked graph  is consistent if and only if for any spanning tree T of
G all fundamental cycles with respect to T are consistent and all common paths of pairs of
these fundamental cycles have end vertices carrying the same marks. �

Theorem 2: The line sigraph  of a sigraph  is canonically consistent if
and only if the following conditions hold in S:

(1) The number of negative edges of odd negative edge degree is even
(a) for every cycle Z in S, and
(b) for the edges incident at v with  such that v does not lie on any cycle Z in S;

(2) If  and  are edges incident at v with  lying on the cycle Z,
then the numbers of all-negative 2-paths from ei and ej have the same parity 
and the number of all-negative 2-paths from ek is even;

(3) If , then for all negative edges ej incident at v, .

Proof: Necessity Suppose  is canonically consistent, then every cycle Z′ in  is canonically consis-
tent. Thus, Z′ must have an even number of negatively marked vertices. Let  be a cycle
in S. By definition of ,  is a cycle in . Clearly, a positive edge and a negative edge
of even negative edge degree in Z will result in positively marked vertices in Z′ but a negative edge of odd
negative edge degree in Z will create a negatively marked vertex in Z′. Since Z′ has an even number of neg-
atively marked vertices, this means that the number of negative edges of odd negative edge degree is even.
Thus, (1a) follows.

Next, let . Suppose v does not lie on any cycle Z in S and that the edges  are incident at v.
Since these three edges form a triangle in  and  is canonically consistent, the number of negative
edges of odd negative edge degree amongst them must be even. Thus, (1b) follows.

S1 S1
u σ1,( )= S2 R,( ) S2 S2

u σ2,( )= ϕ: E S2( )
V S1

u
( ) E S2( ) μ: V S1

u
( ) +1 –1,{ }→ S1

u

uv E S1
u

( )∈ ϕ 1– u( ) ϕ 1– v( ),{ } R∈⇔

μ u( ) μ v( ),{ } σ ϕ 1– u( )( ) σ ϕ 1– v( )( ),{ }= uv E S1
u

( )∈∀

S2 R,( )

μ v( )
v V Z( )∈
∏ 1=

ϕ 1– u( ) ϕ 1– v( )∩ ∅=
S2 R,( )

S2 R,( )
μσ

μσ v( ) σ e j( )
e j Ev∈
∏ ,=

Gμ

L S( ) S Su σ,( )=

d v( ) 3=

d v( ) 3= ei e j ek, , ei e j,

d v( ) 3> de
–

e j( ) 0 (mod 2)≡
L S( ) L S( )

Z v1e1…vnenv1=
L S( ) Z′ e1e2…ene1= L S( )

d v( ) 3= ei e j ek, ,
L S( ) L S( )
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Now, let  and suppose that  are edges incident at v with ei and ej lying on the cycle Z. By
definition of , the edge  in  is in the cycles Z′ and Z′′ created, respectively, from the vertex of
degree three and the cycle Z. Because  is canonically consistent, using Theorem 1, we obtain

(1) .

Assume that the numbers of all-negative 2-paths from ei and ej have opposite parity. Then ei and ej are oppo-
sitely marked vertices in , a contradiction to equation (1). However, if  and Z′ is canon-
ically consistent, then ek must be a positively marked vertex in Z′. Consequently, the number of all-negative
2-paths from ek is even and (2) follows.

Now, let v be a vertex in S such that  and let ej be a negative edge incident at v. Suppose that
, then  is odd. Then an odd number of negative edges are adjacent to ej in S and

because of the canonical marking, ej is a negatively marked vertex in . Thus, this will form an inconsis-
tent cycle in , a contradiction to the assumption that  is canonically consistent. Therefore,

 for all negative edges ej incident at v, and (3) follows.

Sufficiency Suppose Conditions (1), (2), and (3) hold for a sigraph S. We show that  is canonically con-
sistent,; that is, every cycle Z′ in  must have an even number of negatively marked vertices. Let Z′ be a
cycle in  corresponding to the cycle Z in S. By Condition (1a), Z contains an even number of negative
edges of odd negative edge degree, so by the definition of , Z′ contains an even number of negatively
marked vertices. Now let , with v not lying on any cycle Z in S, and suppose edges  are inci-
dent at v. Clearly, by the definition of , there is a cycle Z′ due to the three edges incident at v. By Con-
dition (1b), there is an even number of negative edges of odd negative edge degree incident at v. This means
that the cycle Z′ contains either two or zero negatively marked vertices.

Now, let  and let  be edges incident at v, where ei and ej lying on the cycle Z in S. By the
definition of , the edge  in  is common to the cycles Z′ and Z′′ created by the three edges inci-
dent at v and the cycle Z. Now, by Condition (2), the number of all-negative 2-paths from ei and ej have the
same parity, this means that

,

and again, by Condition (2),

.

Consequently, Z′ contains an even number of negatively marked vertices, by Condition (1a), Z′′ contains an
even number of negatively marked vertices, and using Theorem 1, the cycle formed by the symmetric differ-
ence of Z′ and Z′′ also contains an even number of negatively marked vertices.

By condition (3), all the vertices of cycles in  due to vertices of degree greater than three in S are posi-
tively marked. Hence the theorem. �

Theorem 3: If for every negative edge ej in a sigraph S, ,
then the line sigraph  of S is canonically consistent.

Proof: Since only negative edges in S generate negatively marked vertices in ,  for
every negative edge ej in S. This implies that an even number of negative edges is adjacent to every negative
edge in S, and hence, by definition of , every vertex in  is marked positively. Thus  is canoni-
cally consistent. �

Corollary 4: If a sigraph S has all-negative sections of length at most one, 
then the line sigraph  of S is canonically consistent. �

Corollary 5: Theorem 3 and Corollary 4 provide sufficient conditions for a 
line sigraph  of S to be canonically consistent. �

Corollary 6: The line sigraph  of a regular sigraph S is canonically consistent. �

Corollary 7: If for every positive edge ej in a sigraph S, 
then the line sigraph  of  is canonically consistent. �

d v( ) 3= ei e j ek, ,
L S( ) eie j L S( )

L S( )

μσ ei( ) μσ e j( )=
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–
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3. Canonically Consistent �-Line Sigraphs

In this section, we obtain a characterization of canonically consistent ×-line sigraphs.

Theorem 8: The ×-line sigraph  of a sigraph  is canonically 
consistent if and only if the following conditions hold in S:

(1) For every cycle Z in S, the number of negative edges of odd edge degree is even;

(2) If , then for all ej incident at v,
(a)  if , and
(b)  if ;

(3) If  and  are edges incident at v with ei and ej lying on the cycle Z 
having , , and ; and  ( ),

 ( ), and  ( ) are edges adjacent to ei, ej, and ek,
respectively, then

(a) , and

(b) ;

(4) If  and v does not lie on any cycle Z in S, then the edges ei, ej, and ek 
incident at v satisfy Conditions (3a) and (3b).

Proof: Necessity Suppose  is canonically consistent, then every cycle Z′ in  is canonically con-
sistent. This means that Z′ must have an even number of negatively marked vertices. Let 
be a cycle in S. By definition of ,  is a cycle in . Let  for each edge
ej, . Since

(2) ,

where  and  are edges not contained in Z.

If lj is even, then  is also even. Thus the right hand side of Equation (2) is always positive irrespective
of the signs of edges of the cycle Z. If ej is positive, then again the right hand side of Equation (2) is positive.
Thus, let  be the negative edges of odd edge degree and  be the positive or
negative edges of even edge degree. Then,

(3) .

Since  is canonically consistent, the right hand side of Equation (3) must be positive but the factor

is positive, so the factor  is also positive.

Since  is odd and ej is a negative edge for , then k must be even and (1) follows.

Now, let v be a vertex in S such that  and let ej be a positive edge incident at v. If ,
then  is odd so that an odd number of negative edges are adjacent to ej in S. Then, because of the canon-
ical marking, ej is a negatively marked vertex in . This creates an inconsistent cycle in , a contra-
diction to the assumption that  is canonically consistent. Therefore,

  if .

Hence, (2a) follows.

L× S( ) S Su σ,( )=

d v( ) 3>
de

–
e j( ) 0 (mod 2)≡ σ e j( ) +=

de
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Now suppose  and let edges ej, ej, and ek be incident at v, with ei and ej lying on a cycle Z. Let
, , and . By the definition of , the edge  in  is common to

the cycles Z′ and Z′′ respectively created the vertex of degree three and the cycle Z. Since  is canonically
consistent, and using Theorem 1, we obtain

(4) .

Then

(5) .

Similarly,

(6) .

From (4), (5), and (6), we obtain

.

Thus, (3a) follows.

Next, since Z′ is a cycle in  resulting from the edges ei, ej, and ek, and , then

,

otherwise we have an inconsistent cycle Z′ in . Thus, (3b) follows.

Now let , where v does not lie on any cycle Z in S, and let edges ei, ej, ek be incident at v. Since these
three edges form a triangle in , Condition (3a) and (3b) must be satisfied by edges ei, ej, and ek, other-
wise, there is a contradiction to the assumption. Hence, (4) follows.

Sufficiency Suppose conditions (1), (2), (3), and (4) hold for a sigraph S. We show that  is canonically
consistent; that is, every cycle Z′ in  has an even number of negatively marked vertices. Let Z′ be a cycle
in  corresponding to the cycle Z in S. By condition (1), Z contains even number of negative edges of odd
edge degree. Using Equation (3), Z′ contains an even number of negatively marked vertices. By condition (2),
any cycle in  resulting from a vertex of degree greater than three in S contains an even number of neg-
atively marked vertices.

Now suppose  and let ei, ej, and ek be edges incident at v with ei and ej lying on the cycle Z, with
, e , and . By the definition of , the edge  in  is common

to the cycles Z′ and Z′′ respectively created by the three edges incident at v and the cycle Z. By Condition (3a),
 and by Condition (3b), . Consequently, Z′ contains an even number of nega-

tively marked vertices. By Condition (1), Z′′ contains an even number of negatively marked vertices. Thus,
using Theorem 1, the cycle formed by the symmetric difference of Z′ and Z′′ also contains an even number of
negatively marked vertices.

Now let  where v does not lie on a cycle and suppose the edges ei, ej, and ek are incident at v. Clearly,
by definition of  there is a cycle Z′ due to the three edges incident at v. By Condition (4), the edges ei,
ej, and ek satisfy Conditions (3a) and (3b). Thus, the cycle Z′ contains two or zero negatively marked vertices.
Hence the theorem. �
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Theorem 9: If for every edge ej in a sigraph S,

(1)  if  and

(2)  if , 

then the ×-line sigraph  of S is canonically consistent.

Proof: If ej is positive edge in S, then by condition (1), an even number of negative edges is adjacent to ej in
S. This implies that ej is a positively marked vertex in . If ej is a negative edge in S, then by condition
(2) there is an even number of positive edges adjacent to ej in S. This means that ej is a positively marked ver-
tex in . Thus  is canonically consistent. �

Remark 10: Theorem 9 provides a sufficient condition for a  ×-line sigraph  of a sigraph S to be canon-
ically consistent.

Corollary 11: The ×-line sigraph  of a regular sigraph S is canonically consistent. �

Theorem 12: If the  ×-line sigraph  is canonically consistent for a sigraph S, 
then  is also canonically consistent. �

4. Conclusion

In this paper, we obtained the characterization of canonically consistent line sigraphs and canonically consis-
tent  ×-line sigraphs. We have also derived various sufficient conditions for a line sigraph and a ×-line sigraph
to be canonically consistent.
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Abstract
Hamilton cycles are cycles of largest length and triangles are cycles of smallest length in a graph. In
this paper the number of Hamilton cycles and triangles in a class of Cayley graphs associated with the
Euler totient function , for integer , are determined.

1. Introduction

Berrizbeitia and Giudici [1][2] and Dejter and Giudici [3] studied the cycle structure of Cayley graphs asso-
ciated with certain arithmetic functions. In this paper we determine the number of Hamilton cycles and trian-
gles in a class of Cayley graphs associated with the Euler totient function . The enumeration of Hamilton
cycles and triangles in quadratic residue Cayley graphs is presented elsewhere [4].

Let  be a group. A subset S of X is called a symmetric subset provided that for all , . The
graph G with vertex set X and edge set  is called the Cayley graph of X corre-
sponding to the symmetric set S. We denote this graph by . Clearly,  is an undirected graph
that contains no loop if the identity element e of X is deleted from S. It is easy to see that the Cayley graph

 is -regular and that the size of  is .

2. Euler Totient Cayley Graph and Its Properties

For positive integer n, let  be the set of equivalence classes modulo n. Then
 is an Abelian group of order n, where ⊕ denotes addition modulo n. Let S denote the set of all pos-

itive integers that are less than n and relatively prime to n. Then, , the Euler totient function. It is
easy to see that S is a symmetric subset of the group ; and that  is a multiplicative subgroup
with order  of the semigroup , where , and � denotes multiplication modulo n.

Definition 2.1: For positive integer n, let  be the additive group of integers
modulo n and let S be the set of all positive integers less than n and relatively prime to n.
The Euler totient Cayley graph  is defined as the graph whose vertex set is

 and whose edge set is . �

Because the graph  is the Cayley graph of the group  associated with the symmetric set S,
the following lemma is immediate.

Lemma 2.2: The graph  is -regular. Moreover, 
the size of  is . �

Lemma 2.3: The graph  is Hamiltonian, and hence, it is connected.

Proof: Let s be an element of S. Then  and s is relatively prime to n. Hence, s is a generator of for
. Consequently,  are all distinct and . For ,

. Thus, for each r, , there is an edge connecting  and . Conse-
quently,  contains the Hamilton cycle . Thus  is Hamiltonian, and
thus, is a connected graph. �

φ n( ) n 1≥

φ n( )

X �,( ) s S∈ s 1– S∈
gh : g 1– h S∈  or hg 1– S∈{ }

G X S,( ) G X S,( )

G X S,( ) S G X S,( ) X S 2⁄

�n 0 1 2 … n 1–, , , ,{ }=
�n ⊕,( )

S φ n( )=
�n ⊕,( ) S �,( )

φ n( ) �n
* �,( ) �n

* �n 0{ }–=

�n ⊕,( )

G �n Φ,( )
�n 0 1 … n 1–, , ,{ }= xy : x y– S∈  or y x– S∈{ }

G �n Φ,( ) �n ⊕,( )

G �n Φ,( ) φ n( )
G �n Φ,( ) nφ n( ) 2⁄

G �n Φ,( )

0 s n< <
�n ⊕,( ) s 2s … n 1–( )s, , , s 2s … ns, , ,{ } �n= 1 r n< <
r 1+( )s rs– s S∈= 1 r n≤ ≤ r 1+( )s rs

G �n Φ,( ) 0 s 2s … ns 0=, , , ,( ) G �n Φ,( )
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Definition 2.4: For , the cycle  is called the Hamilton
cycle corresponding to the element s in S. �

Lemma 2.5: For , the graph  is Eulerian.

Proof: The graph  is -regular. By Theorem 2.5(e) of [5],  is even for . Thus, the
degree of each vertex in  is even so that  is Eulerian. �

Theorem 2.6: If n is even, then the graph  is bipartite.

Proof: We show that  has no odd cycle. To see this, let  be a cycle in .
Then  are edges in , so that  for . Since n is even,

 and  are both odd for . That is, one of  and  is even and the other is odd
for , and the same is true for  and . Thus,  alternate in parity. This shows that
half of  are even and the other half are odd. Consequently, their number (r) is even. It follows that
the cycle  is an even cycle. Hence,  has no odd cycle, so that [6] the graph

 is bipartite. �

Corollary 2.7: If n is even, then  has no triangle.

Proof: By Theorem 2.6, if n is even, then  has no odd cycle. Hence,  has no triangle.
�

3. Enumeration of Disjoint Hamilton Cycles

Lemma 3.1: For any , the Hamilton cycles associated with s and with 
are the same.

Proof: Let s be an element of S. Then, by Lemma 2.3, the graph  has a Hamilton cycle:

.

In the Abelian group ,  for . Hence, for any r, ,

.

Thus the cycle  is the same as Cs. �

Lemma 3.2: For , , and , the Hamilton cycles Cs and Ct 
are edge disjoint.

Proof: Let  such that  and . Then the Hamilton cycles Cs and Ct are

, and .

By Lemma 3.1,

We claim that the Hamilton cycles Cs and Ct are edge disjoint. Suppose that Cs and Ct are not edge disjoint.
Then there exists an edge  in Ct such that either

 or 

for some  or .

However,  implies that  and , which is a contradic-
tion. Similarly,  implies that  and  =

, which is also a contradiction. Therefore, the Hamilton cycles Cs and Ct are edge disjoint.
�

s S∈ Cs 0 s 2s … ns 0=, , , ,( )=

n 3≥ G �n Φ,( )

G �n Φ,( ) φ n( ) φ n( ) n 3≥
G �n Φ,( ) G �n Φ,( )

G �n Φ,( )

G �n Φ,( ) i1 i2 … ir i1, , , ,( ) G �n Φ,( )
i1i2 i2i3 … iri1, , , G �n Φ,( ) is is 1+– S∈ 1 s r 1–≤ ≤

is is 1+– ir i1– 1 s r 1–≤ ≤ is is 1+
1 s r 1–≤ ≤ i1 ir i1 i2 … ir i1, , , ,

i1 i2 … ir, , ,
i1 i2 … ir i1, , , ,( ) G �n Φ,( )

G �n Φ,( )

G �n Φ,( )

G �n Φ,( ) G �n Φ,( )

s S∈ n s–

G �n Φ,( )

Cs 0 s 2s … n 2–( )s n 1–( )s ns 0=, , , , , ,( )=

�n ⊕,( ) nt 0= 1 t n≤ ≤ 0 r n≤ ≤

n r–( )s ns rs– 0 rs– rn rs– r n s–( )= = = =

Cn s– 0 n s–( ) 2 n s–( ) … n 1–( ) n s–( ) 0, , , , ,( )=

s t, S∈ t s≠ t n s–≠

s t, S∈ t s≠ t n s–≠

Cs 0 s 2s … n 1–( )s ns 0=, , , , ,( )= Ct 0 t 2t … n 1–( )t nt 0=, , , , ,( )=

Cs 0 s 2s … n 1–( )s ns 0=, , , , ,( )=

0 n s–( ) 2 n s–( ) … n 1–( ) n s–( ) n n s–( ) 0=, , , , ,( ) Cn s– .= =

it i 1+( )t,( )

it i 1+( )t,( ) js j 1+( )s,( )= it i 1+( )t,( ) k n s–( ) k 1+( ) n s–( ),( )=

0 j n 1–≤ ≤ 0 k n 1–≤ ≤

it i 1+( )t,( ) js j 1+( )s,( )= it js= i 1+( )t j 1+( )s=
it i 1+( )t,( ) k n s–( ) k 1+( ) n s–( ),( )= it k n s–( )= i 1+( )t

k 1+( ) n s–( )
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Theorem 3.3: For , the Euler totient graph  can be decomposed into
 edge-disjoint Hamilton cycles.

Proof: Let  be an integer. We show that  for all . If , then .
Since ,  then .  On the other  hand i f   and ,  then ,  so  that

. Since , this contradicts the fact that  because . Conse-
quently,  for all .

Hence, S can be partitioned into  disjoint pairs of distinct numbers, . By Lemma 3.1, the
Hamilton cycles corresponding to each pair are the same. Thus, by Lemma 3.2, these  distinct pairs
produce  edge disjoint Hamilton cycles.

Since each Hamilton cycle contains  edges, the total number of edges contributed by the 
edge-disjoint Hamilton cycles is  and, by Lemma 2.2, this is equal to the total number of edges in
the .

Hence, the graph  can be decomposed into  edge-disjoint Hamilton cycles. �

4. Enumeration of Triangles

In this section we obtain a formula for the number of triangles in  in terms of another well known
arithmetic function, namely the Schemmel totient function , which denotes the number of pairs of con-
secutive positive integers that are less than n and both relatively prime to n (see [7]).

Because  is a Cayley graph, it is vertex transitive. Thus, to count the number of triangles we con-
centrate our attention on triangles of the form , where  and . Trivially, .
Hence, for any , the triple  is a triangle if . A triangle of this form is called a
fundamental triangle. We denote the set of all fundamental triangles by . That is,

Theorem 4.1: If  is an odd integer, then .

Proof: Let n be an odd positive integer, . Then the triple  is a fundamental triangle if and only
if  and , which implies that b and  are consecutive numbers that are less than n and rel-
atively prime to n. Thus, there are as many fundamental triangles in  as there are pairs of consecu-
tive positive integers that are less than n and relatively prime to n. Hence, . �

Definition 4.2: For each , define 
That is,  is the set of all triangles of the form , for . �

Theorem 4.3: For each , .

Proof: We claim that the mapping  given by  is a bijection.

To see this, let  for some . Then . Since  is a group,
then . Consequently, , and f one-to-one.

Let  be any element of . Then, μ, k, and  are all in S. For , there is a unique
element b in S such that . Thus,  implies that  or . Hence,

 and . However, . Thus the function f is onto
and consequently f is a bijection. Therefore, . �

Theorem 4.4: Let  denote the set of all triangles with 0 as one vertex. Then, for any
odd integer ,

Proof: By definition . For fixed , clearly 

.

The triangle  appears twice in the union, once in  and once in . Hence, by Theorem 4.3

n 3≥ G �n Φ,( )
φ n( ) 2⁄

n 3≥ s n s–≠ s S∈ s 1= n s– n 1– 2≥=
n 3≥ n 1– 1≠ s 1≠ s n s–= n 2s=

gcd s n,( ) gcd s 2s,( ) s= = s 1≠ gcd s n,( ) 1= s S∈
s n s–≠ s S∈

φ n( ) 2⁄ s n s–,( )
φ n( ) 2⁄

φ n( ) 2⁄
�n n= φ n( ) 2⁄

�n φ n( ) 2⁄
G �n Φ,( )

G �n Φ,( ) φ n( ) 2⁄

G �n Φ,( )
φ 2( ) n( )

G �n Φ,( )
0 a b, ,( ) a b, S∈ a b–( ) S∈ 1 S∈

b S∈ 0 1 b, ,( ) b 1–( ) S∈
Δ01

Δ01 0 1 b, ,( ) : b S and b 1–( ) S∈∈{ }.=

n 3≥ Δ01 φ 2( ) n( )=

n 3≥ 0 1 b, ,( )
b S∈ b 1– S∈ b 1–

G �n Φ,( )
Δ01 φ 2( ) n( )=

μ S∈ Δμ 0 μ k, ,( ) : k k μ–( ), S∈{ }.=
Δμ 0 μ k, ,( ) μ S∈

μ S∈ Δμ Δ01 φ 2( ) n( )= =

f : Δ01 Δμ→ f 0 1 b, ,( ) 0 μ μb, ,( )=

0 μ μb1, ,( ) 0 μ μb2, ,( )= b1 b2, S∈ μb1 μb2= S �,( )
b1 b2= 0 1 b1, ,( ) 0 1 b2, ,( )=

0 μ k, ,( ) Δμ k μ–( ) k μ, S∈
k μb= k μ–( ) S∈ μb μ–( ) S∈ μ b 1–( ) S∈

b 1– S∈ 0 1 b, ,( ) Δ01∈ 0 μ k, ,( ) 0 μ μb, ,( ) f 0 1 b, ,( )= =
Δμ Δ01 φ 2( ) n( )= =

Δ 0( )
n 3≥

Δ 0( ) 1
2
---φ n( ) φ 2( ) n( ).⋅=

Δ 0( ) 0 μ k, ,( ) : μ k k μ–( ), , S∈{ }= μ S∈

Δ 0( ) Δμ
μ S∈
∪=

0 μ k, ,( ) Δμ Δk
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�

Theorem 4.5: For any integer  the total number of triangles  
in  is given by

Proof: If n is even, then by Corollary 2.7, . Thus, let n be an odd positive integer.  is ver-
tex transitive and -regular. Thus, the same number of triangles passes through each vertex and this num-
ber is . Therefore, because  has order n, the total number of triangles in  is

.

However, each triangle in  is counted three times (once for each of its three vertices). Thus, the
number  of distinct triangles in  is given by

�
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Abstract
A dominating function or a fractional dominating set of a graph  is a function

 such that for all , the sum of the function values over the closed neighborhood
of v is at least one. A minimal dominating function or a fractional minimal dominating set f is a frac-
tional dominating set such that f is not a fractional dominating set if for any  the value of 
can be decreased. A function f is called a fractional independent set if , for every
vertex v with . An independent function f is called a maximal fractional independent set, if

 for every  with . A set  is a perfect dominating set if for
every vertex , . A perfect dominating set S is minimal, if no proper subset
of S is a perfect dominating set. We define the fractional version of minimal perfect dominating set
and make a comparative study of various subsets of the fractional minimal dominating sets of a graph.

1. Introduction

In this paper  represents an undirected graph with no loop or multiple edge. For graph theoretic
terms that are not defined here refer to West [1]. In this section we discuss basic definitions and results. A sub-
set D of the vertex set  of a graph G, is called a dominating set if  for any ,
where  is the closed neighborhood of vertex v. A dominating set D is a minimal dominating set, if no
proper subset of D is a dominating set. More than one thousand research papers have been published on
approximately one hundred variations of domination in graphs. Almost all versions of dominating sets and
their properties, are discussed by Haynes, Slater, and Hedetniemi in [2]. Another text by the same authors [3],
discusses almost all advanced topics in this area and contains many comprehensive survey articles. The frac-
tional version of a dominating set is popularly known as a dominating function of a graph  and is
defined as a function  such that

for all . A minimal dominating function is a dominating function f such that f is not a dominating func-
tion if for any  the value of  is decreased. In this paper, we call these functions fractional domi-
nating sets and fractional minimal dominating sets, respectively. For any dominating function 
of G,

.

The boundary of f denoted by Bf is

.

The positive set of f, denoted by Pf is . For any two subsets A and B of V, we say that A
dominates B (denoted by ) if each vertex in  is adjacent to some vertex in A. The fractional dom-
inating number of a graph G, denoted by

G V E,( )=
f : V 0 1,[ ]→ v V∈

v V∈ f v( )
Σx N v[ ]∈ f x( ) 1=

f v( ) 0>
Σx N v[ ]∈ f x( ) 1≥ v V∈ f v( ) 0= S V⊆

v V S–∈ N v( ) S∩ 1=

G V E,( )=

V G( ) N v[ ] D∩ ∅≠ v V D–∈
N v[ ]

G V E,( )
f : V 0 1,[ ]→

f x( )
x N v[ ]∈

∑ 1≥

v V∈
v V∈ f v( )

f : V 0 1,[ ]→

f N v[ ]( ) f x( )
x N v[ ]∈

∑=

v V∈  : f x( )
x N v[ ]∈

∑ 1=
⎩ ⎭
⎨ ⎬
⎧ ⎫

v V∈  : f v( ) 0>{ }
A B→ B A–
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The set of all fractional minimal dominating sets of a graph G is denoted by . The following theorem
provides a way to identify fractional minimal dominating sets of a given graph.

Theorem 1.1 [4]: A fractional dominating set f of a graph G is a fractional minimal 
dominating set if and only if . �

A convex combination of two fractional minimal dominating sets f and g of G is , where
. Because any convex combination of two fractional dominating sets is a fractional dominating set,

the set of all fractional dominating sets is a convex set. However, it is evident from the following theorem that
the convex combination of two fractional minimal dominating sets need not always be a fractional minimal
dominating set. The next theorem offers a necessary and sufficient condition for a convex combination of two
fractional minimal dominating sets to be minimal.

Theorem 1.2 [4]: A convex combination of two fractional minimal dominating sets f and g
is minimal if and only if . �

In this context Cockayne et al. [4] introduced the concept of a universal fractional minimal dominating set. A
fractional minimal dominating set of G is called a universal fractional minimal dominating set if and only if
its convex combination with any other fractional minimal dominating set is minimal.

Theorem 1.3 [4]: 

1. If the fractional minimal dominating set g satisfies  and if for any 
fractional minimal dominating set f, Bf dominates V, then g is a universal 
fractional minimal dominating set.

2. If g is a universal fractional minimal dominating set, then Bg dominates V. �

To continue with our characterization of universal fractional minimal dominating sets we require the follow-
ing definitions.

Definitions: A vertex  is said to absorb the vertex , and u is said to be absorbed
by v, if . In this case, v is called an absorbing vertex and u is called an
absorbed vertex.

Let A = {  : v is an absorbing vertex} and Ω = {  : u is an absorbed vertex}. A
vertex w of a graph G is said to be f-sharp, where f is an fractional minimal dominating set
of G, if . Furthermore, w is said to be sharp if w is f-sharp, for some frac-
tional minimal dominating set f of G. �

Lemma 1.4 [4]: Let f be an fractional minimal dominating set of G and let w be an f-sharp
vertex. Then
1. If  with  a vertex absorbed by v, then ;
2. ; and
3. . �

Theorem 1.5 [5]: The fractional minimal dominating set g of a graph  is a
universal fractional minimal dominating set if and only if
1.  and
2.  for each sharp vertex w of G. �

Theorem 1.2 can be extended to a finite number of fractional minimal dominating sets. Thus, we obtain the
following generalization.

Theorem 1.6 [6]: A convex combination of n fractional minimal dominating sets
 is minimal if and only if .

�

The fact that the set of fractional dominating sets is convex and some fractional dominating sets cannot be
expressed as a convex combination of two or more fractional dominating sets motivates the definition of basic

γ f G( ) min f x( )
x V∈
∑  : f  is a fractional mimimal dominating set of G

⎩ ⎭
⎨ ⎬
⎧ ⎫

.=

FD G( )

B f P f→
hλ λf 1 λ–( )g+=

0 λ 1< <

B f Bg∩ P f Pg∪→

Bg V=

v V∈ u v≠
N u[ ] N v[ ]⊂

v V∈ u V∈

B f N w[ ]∩ A⊆

v B f N w[ ]∩∈ u Ω A–∈ w N u[ ]∉
w B f∉
f w( ) 0=

G V E,( )=

V A– Bg⊆
g w( ) 0=

f 1 f 2 … f n, , , B f 1
B f 2

… B f n
∩ ∩ ∩ P f 1

P f 2
… P f n

∪ ∪ ∪→
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fractional dominating sets and basic fractional minimal dominating sets [6]. A fractional minimal dominating
set is called a basic fractional minimal dominating set if it cannot be expressed as a proper convex combina-
tion of two distinct fractional minimal dominating sets. Kumar et al. [7] presented a necessary and sufficient
condition for a fractional minimal dominating set to be a basic fractional minimal dominating set. Based on
this condition they developed an algorithm to determine whether a given fractional minimal dominating set
is basic.

Theorem 1.7 [7]: Let f be a fractional minimal dominating set. The function f is a basic
fractional minimal dominating set if and only if there does not exist a fractional minimal
dominating set g such that  and . �

Theorem 1.8 [7]: Let f be a fractional minimal dominating set of a graph 
with  and . Let

 be an  matrix defined by

Consider the system of linear equations

(1) , for .

Then the function f is a basic fractional minimal dominating set if and only if
Equation (1) has only a trivial solution. �

Corollary 1.9 [7]: If  for all , then the fractional minimal 
dominating set f of G is a basic fractional minimal dominating set. �

A set  is called an independent set of a graph G, if no pair of vertices of S is adjacent in G. A maximal
independent set of G is an independent set S such that there does not exist another independent set S′ that prop-
erly contains S. In [6] Kumar suggested a definition for the fractional versions of both independent sets and
maximal independent sets.

A function  is called a fractional independent set if for every vertex v with ,
. A fractional independent set f is called a maximal fractional independent set if for every

 with , . The set of all maximal fractional independent sets is denoted by
FI. We observe that if S is (a maximal) an independent set in G, then  is (a maximal) a fractional inde-
pendent set.

Theorem 1.10 [8]: A function f is a fractional independent set if and only if . �

A convex combination of two maximal fractional independent sets f and g is defined by ,
where . A characterization of convex maximal fractional independent sets is provided by the next
result.

Lemma 1.11 [8]: A convex combination of two maximal fractional independent sets 
f and g is a maximal fractional independent set if and only if . �

A maximal fractional independent set f is said to be a basic maximal fractional independent set if there do not
exist two maximal fractional independent sets f and g, and , such that . The
characteristic function of a single vertex subset of  is a basic maximal fractional independent set of Kn,
the complete graph of order n.

Theorem 1.12 [8]: A maximal fractional independent set f of G is basic if and only if there
is no other maximal fractional independent set g such that  and . �

A maximal fractional independent set f is said to be a universal maximal fractional independent set, if a con-
vex combination of f with any other maximal fractional independent set is a maximal fractional independent
set. The set of all universal maximal fractional independent sets is denoted by FUI.

B f Bg= P f Pg=

G V E,( )=
B f v1 v2 … vm, , ,{ }= P f u V∈  : 0 f u( ) 1< <{ } u1 u2 … un, , ,{ }= =

A aij( )= m n×

aij

1 if v j is adjacent to u j or v j u j=

0 otherwise.⎩
⎨
⎧

=

aijx j
j

∑ 0= 1 i m≤ ≤

f v( ) 0 1,[ ]∈ v V∈

S V⊆

f : V 0 1,[ ]→ f v( ) 0>
Σx N v[ ]∈ f x( ) 1=
v V∈ f v( ) 0= Σx N v[ ]∈ f x( ) 1≥

f χS=

P f B f⊆

hλ λf 1 λ–( )g+=
0 λ 1< <

P f Pg∪ B f Bg∩⊆

λ 0 1,( )∈ h λf 1 λ–( )g+=
V Kn( )

B f Bg= P f Pg=
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Lemma 1.13 [8]: If f is a universal maximal fractional independent set of a graph G,
then . �

Corollary 1.14 [8]: If f is a universal maximal fractional independent set of G, then

,

where the intersection is taken over all maximal fractional independent sets of G. �

A characterization of graphs that have a universal maximal fractional independent set is provided in [8].

Theorem 1.15 [8]: A graph G has a universal maximal fractional independent set if and
only if there exists a unique partition of V into sets that induce maximal cliques. �

The graphs that admit a universal maximal fractional independent set can be constructed from a disjoint union
of t cliques (possibly of different sizes), . For each i, , select a non-empty subset

 and any subset of edges joining vertices in

The graph induced by these edges admits a universal maximal fractional independent set.

2. Minimal Fractional Perfect Dominating Sets and Fractional Efficient Dominating Sets

A set  is called a perfect dominating set if, for every vertex , . Yen and Lee
[9] proved that, given a positive integer k, the problem of deciding if a graph G has a perfect dominating set
of cardinality at most k is NP-complete. A fractional perfect dominating set of G is defined to be a function

 such that  if  and  if . A fractional perfect dom-
inating set is a minimal fractional perfect dominating set if it is a fractional minimal dominating set.

Theorem 2.1: A fractional perfect dominating set f is minimal, if and only if .
�

A convex combination of two fractional perfect dominating sets f and g,  is always a frac-
tional perfect dominating set. Thus, the set of all fractional perfect dominating sets is a convex set. However,
as the following theorem states, a convex combination of two minimal fractional perfect dominating sets may
not be minimal. A minimal fractional perfect dominating set is a universal minimal fractional perfect domi-
nating set if its convex combination with any other minimal fractional perfect dominating set is minimal. The
condition for minimality of a convex combination is given in the following result, which shows that the set of
all minimal fractional perfect dominating sets is not in general convex.

Theorem 2.2: A convex combination of two minimal fractional perfect dominating sets f
and g is minimal, if and only if . �

Theorem 2.3: If f is an minimal fractional perfect dominating set of G, then .

Proof: Since f is minimal, . By definition of fractional perfect dominating set, if , then
. Hence, . �

Theorem 2.4: If a graph G has an minimal fractional perfect dominating set f with
, then f is a universal minimal fractional perfect dominating set.

Proof: Let g be any minimal fractional perfect dominating set of G. Then  and since ,
. Thus, the convex combination f and g is an minimal fractional perfect dom-

inating set. Hence, f is a universal minimal fractional perfect dominating set. �

A minimal fractional perfect dominating set of a graph G is a basic minimal fractional perfect dominating set
if it cannot be expressed as a convex combination of two or more minimal fractional perfect dominating sets.
The following results reveal the relationship between the set of all basic fractional minimal dominating sets
and the set of all basic minimal fractional perfect dominating sets of a graph.

B f V=

P f Bg
g

∩

G1 G2 … Gt, , , 1 i t≤ ≤
Xi V Gi( )⊆

Xi
i 1=

t

∪ .

S V⊆ v V S–∈ N v( ) S∩ 1=

f : V 0 1,[ ]→ f N v[ ]( ) 1≥ f v( ) 0> f N v[ ]( ) 1= f v( ) 0=

B f P f→

hλ λf 1 λ–( )g+=

B f Bg∩ P f Pg∪→

B f V G( )→

B f P f→ f v( ) 0=
f N v[ ]( ) 1= B f V P f–( )→

B f V G( )=

Bg V→ B f V G( )=
B f Bg∩ V Bg∩ Bg V→= =
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Theorem 2.5: If a basic fractional minimal dominating set f of a graph G is a minimal per-
fect dominating set, then it is a basic minimal fractional perfect dominating set.

Proof: Suppose, f is not a basic minimal fractional perfect dominating set. Then , where
 and each fi is a minimal fractional perfect dominating set. This shows that f is a convex combina-

tion of two or more fractional minimal dominating sets, which is a contradiction. �

Theorem 2.6: If f is a basic minimal fractional perfect dominating set, then f is a basic 
fractional minimal dominating set.

Proof: Let f be a basic minimal fractional perfect dominating set and suppose that it is not a basic fractional
minimal dominating set. Then there exist fractional minimal dominating sets  such that

, where . The boundary and the positive set of f are  and ,
respectively. Thus, there exist infinitely many fractional minimal dominating sets whose boundary and
positive sets are same as that of f. Hence, these fractional minimal dominating sets are minimal fractional
perfect dominating sets. We can select two minimal fractional perfect dominating sets g1 and g2 such that

. Therefore, f can be expressed as a convex combination of at least two minimal frac-
tional perfect dominating sets, a contradiction. �

Lemma 2.7: If a minimal fractional perfect dominating set h is a convex combination of
two fractional minimal dominating sets f and g and f is not an minimal fractional perfect
dominating set, then there exists some  such that  and .

Proof: Since f is not a minimal fractional perfect dominating set, there exists  such that  and
. Thus, . Now suppose . Since h is a minimal fractional perfect dominating set, v

must be an element of Bh, which is a contradiction. �

If, for a graph G, there exists a set of basic minimal fractional perfect dominating sets, say
, such that every minimal fractional perfect dominating set of the graph is a convex

combination of a subset of B, then the set of all minimal fractional perfect dominating sets is closed. The next
result discusses the possibility of the set of all minimal fractional perfect dominating sets being closed.

Lemma 2.8: If there exists a minimal fractional perfect dominating set h, of a graph G such
that if h can be expressed as a convex combination of a set of fractional minimal dominating
sets that are not all minimal fractional perfect dominating sets, then the set of all minimal
fractional perfect dominating sets of G is not a closed set.

Proof: Let the minimal fractional perfect dominating set h be a convex combination of a set of fractional min-
imal dominating sets say  such that f1 is not a minimal fractional perfect dominating set. If

, let . The function g is a minimal fractional perfect dominating set. Define a
sequence of real numbers  such that . Let . Since each hj is a convex
combinations of fis, it is a minimal fractional perfect dominating set. Furthermore,  and f1 is not in
the set of all minimal fractional perfect dominating sets. Consequently, the set is not closed. �

Next we discuss an example of a graph whose set of minimal fractional perfect dominating sets is open.

Example: Let , where . Let the vertex set of G be . Consider the
functions f1 and f2 defined by , , , and  for . f1
and f2 are the only two basic fractional minimal dominating sets and all other fractional minimal dominating
sets are convex combinations of these two basic fractional minimal dominating sets. Furthermore, all frac-
tional minimal dominating sets except f2 are minimal fractional dominating sets of G. Hence, the set of all
minimal fractional perfect dominating sets of G is not closed.

Theorem 2.9: Let g be a fractional minimal dominating set of a graph G such that
 is g-sharp. Then g is not a universal minimal fractional perfect dominating set.

Proof: Let g be a fractional minimal dominating set of a graph G such that  is g-sharp. Suppose that
g is a universal minimal fractional perfect dominating set. Then, by definition of minimal fractional perfect
dominating set, all  with  must be in Bg. Thus, by Lemma 1.4,  and , which
is a contradiction. �

f Σiλi f i=
Σiλi 1=

f 1 f 2 … f r, , ,
f Σiλi f i= Σiλi 1= B f ∩iB f i

= P f ∩iP f i
=

f λg1 1 λ–( )g2+=

v V∈ f v( ) 0= h v( ) 0>

v V∈ f v( ) 0=
v B f∉ v Bh∉ h v( ) 0=

B f 1 f 2 … f r, , ,{ }=

f 1 f 2 … f r, , ,{ }
h Σiλi f i= g Σi 2≥ λi f i=

λ1 j( ) λ1 j 1→ h j λ1 j f 1 1 λ1 j–( )g+=
h j f 1→

G K1 n,= n 2≥ V G( ) v v1 v2 … vn, , , ,{ }=
f 1 v( ) 1= f 1 vi( ) 0= f 2 v( ) 0= f 2 vi( ) 1= i 1 2 … n, , ,=

w V G( )∈

w V G( )∈

v V∈ g v( ) 0= g w( ) 0= w Bg∉
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According to the definition given by Bang et al. [10][11], a dominating set S of G is called an efficient dom-
inating set of G if the closed neighborhood of every vertex in V has exactly one vertex of S. Equivalently, S
is an efficient dominating set if S dominates G and the distance between any two elements of S is at least three.
Grinstead and Slater [12] introduced the idea of fractional efficient domination. A fractional efficient domi-
nating set of a graph  is a dominating function  such that  for
all . If f is a fractional efficient dominating set, then . Thus, every fractional efficient
dominating set of a graph G is a fractional minimal dominating set. Grinstead and Slater [12] also proved that,
if f is a fractional efficient dominating set of G, then . It is interesting to note that
the conditions for minimal fractional perfect dominating set and the conditions for maximal fractional inde-
pendent set together give the conditions for fractional efficient dominating set. A fractional efficient domi-
nating set f of G is a positive fractional efficient dominating set if . For convenience, denote the set
of all fractional efficient dominating sets of G by . Additionally, let  and  denote the
set of all minimal fractional perfect dominating sets and the set of all positive fractional efficient dominating
sets, respectively. Then . We note the following:

Observation 2.10: The set of all positive fractional efficient dominating sets and the set of all maximal frac-
tional independent sets are subsets of the set of all fractional minimal dominating sets.

Observation 2.11: If a function is both a positive fractional efficient dominating set and a maximal fractional
independent set, then it is a fractional efficient dominating set.

Observation 2.12: If f is a universal maximal fractional independent set of G, then f is a fractional efficient
dominating set.

These observations are summarized in the following figure.

A convex combination of two fractional efficient dominating sets f and g is minimal if and only if 
→ . Naturally, there exists a fractional efficient dominating set that cannot be expressed as a convex
combination of two or more fractional efficient dominating sets. Such functions are basic fractional efficient
dominating sets. The next result characterizes basic fractional efficient dominating sets of a graph.

Theorem 2.13: A fractional efficient dominating set f of a graph G is a basic fractional
efficient dominating set if and only if there exists no other fractional efficient dominating
set g such that .

Proof: Let f be a basic fractional efficient dominating set and suppose there exists an fractional efficient dom-
inating set g with the property . Because f and g are maximal fractional independent sets, then by
Theorem 1.12, f is not a basic maximal fractional independent set. Consequently, there exists a set of maximal
fractional independent sets  such that , , and . Since

, then  for all i, and hence,  for all i. Thus, each fi is a fractional efficient domi-
nating set. This contradicts the fact that f is a basic fractional efficient dominating set.

Conversely, suppose there is no fractional efficient dominating set g such that  and , and
that f is not a basic fractional efficient dominating set. Then, by definition of basic fractional efficient domi-
nating set, there exists a set of fractional efficient dominating sets  such that

, where  and . Furthermore,  and . Since
Now for ,  and  are fractional efficient dominating sets with  and .
This is a contradiction.

�

G V E,( )= f : V 0 1,[ ]→ Σx N v[ ]∈ f x( ) 1=
v V∈ B f V P f→=

γ G( ) f Σx V∈ f x( )= =

P f V=
FE G( ) FPE G( ) FMP G( )

FPE G( ) FMP G( )∩ FE G( )=

Figure 

B f Bg∩
P f Pg∪

P f Pg=

P f Pg=

f 1 f 2 … f r, , ,{ } f Σiλi f i= B f ∩iB f i
= P f ∪iP f i

=
B f V= B f i

V= P f i
B f i

⊆

B f Bg= P f Pg=

f 1 f 2 … f r, , ,{ }
f hλ1

Σiλi f i= = Σiλi 1= 0 λi 1< < B f ∩iB f i
= P f ∪iP f i

=
λ11 λ12≠ hλ11

hλ12
Bhλ1i

B f= Phλ1i

P f=
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Theorem 2.14: Every fractional efficient dominating set of G is a maximal 
fractional independent set.

Proof: If f is a fractional efficient dominating set of G, then  and . Thus, , and
hence, f is an maximal fractional independent set of G. �

A convex combination of two fractional efficient dominating sets (positive fractional efficient dominating
sets) f and g of a graph G is a function , where . A positive fractional efficient
dominating set f is a basic positive fractional efficient dominating set if it is not a convex combination of two
or more positive fractional efficient dominating sets. Let f be a fractional efficient dominating set of G. We
define

 and .

Lemma 2.15: If f is a positive fractional efficient dominating set of G, then

1. , and

2. .

Proof: The first statement follows from the definition of positive fractional efficient dominating set.

To prove Statement 2, suppose that f is a positive fractional efficient dominating set of G and .
Because f is a fractional minimal dominating set, . Let . Since 
and , there exists  such that . This contradicts the premise .

�

Theorem 2.16: If a graph G has a basic positive fractional efficient dominating set, then G
has no other positive fractional efficient dominating set.

Proof: Suppose a graph G has a basic positive fractional efficient dominating set f and another positive frac-
tional efficient dominating set g. Since  and , the systems of equations corre-
sponding to f and g are the same. Thus, by Theorem 1.7, we obtain a system of equations that has
simultaneously a unique solution and infinitely many solutions, a contradiction. �

Corollary 2.17: If a graph G has two positive fractional efficient dominating sets, then G
has no basic positive fractional efficient dominating set. �

Theorem 2.18: The set of all fractional efficient dominating sets and the set of all positive
fractional efficient dominating sets of a graph G are convex.

Proof: Let f and g be two fractional efficient dominating sets of a graph G and let  be their
convex combination. Then, . Consequently, h is an fractional efficient dominating set.

Similarly, let f and g be two positive fractional efficient dominating sets of G and let h be their convex com-
bination. Then, h is a fractional efficient dominating set. Furthermore, . Hence, h is a
positive fractional efficient dominating set. �

Theorem 2.19: Let G be a graph such that . Then  is a closed
subset of .

Proof: By Theorem 2.18,  is a convex set. First, we show that if a fractional efficient dominating set

f of G is a convex combination of a set of fractional minimal dominating sets, say , then fi is
a fractional efficient dominating set for all i.

We know that  for all i. Thus,  for all i, and hence, each fi is a fractional
efficient dominating set. The rest of the proof follows easily. �

Now we prove that if  is not a singleton set, then  is an open set. For this we need the fol-
lowing definitions from [6]. Let f and g be two fractional minimal dominating sets of a graph G, with

 and . Let i be any real number and let . Clearly  and .
Now, let S be the subset of the set of real numbers � defined by

In general, hi is not a fractional dominating set because hi becomes negative for large values of i.

B f V= P f V⊆ P f B f⊆

h λf 1 λ–( )g+= 0 λ 1< <

C0 f( ) v V∈  : f v( ) 0={ }= C1 f( ) v V∈  : f v( ) 1={ }=

C0 f( ) ∅=

C1 f( ) ∅=

x C1 f( )∈
B f N x( )∩( ) ∅≠ y B f N x( )∩∈ N y( ) 2≥

x N y( )∈ z N y( )∈ f z( ) 0= C0 f( ) ∅=

B f Bg V= = P f Pg V= =

h λf 1 λ–( )g+=
Bh B f Bg∩ V= =

Ph P f Pg∪ V= =

FE G( ) ∅≠ FE G( )
FD G( )

FE G( )

f 1 f 2 … f r, , ,{ }

V B f ∩iB f i
B f i

⊆= = B f i
V=

FPE G( ) FPE G( )

B f Bg= P f Pg= hi 1 i+( )g if–= h0 g= h 1– f=

S i : i �∈ hi is a fractional dominating set such that Bhi
Bg=  and Phi

Pg=,{ }.=
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Lemma 2.20 [6]: If , then hi is a fractional minimal dominating set of G. �

Lemma 2.21 [6]: S is a bounded open interval of �. �

It may be noted that for any hi, where  is a convex combination of two fractional minimal dominating
sets hk and hl, where , the set  is an open set.

Theorem 2.22: Let G be a graph such that  contains at least two elements. 
Then,  is an open subset of .

Proof: First, we claim that if f and g are two partial fractional efficient dominating sets of a graph G, then any
, , is a positive fractional efficient dominating set. For all , hi is a fractional

minimal dominating set. Additionally,  and . Thus, hi is a positive fractional
efficient dominating set. Now, by the remark given above, any hi, where , is a convex combination of
two positive fractional efficient dominating sets hk and hl, where . Hence, for every positive fractional
efficient dominating set f, there exists an open subset of . �

Proposition 2.23: If a graph G contains two vertices u and v such that , 
then  for all , where f is any fractional efficient dominating
set of G.

Proof: Let f be a fractional efficient dominating set of G. Then, by definition of fractional efficient dominat-
ing set, . Also,  =  = 1. Hence, 
for all . �

Corollary 2.24: If a graph G contains two vertices u and v such that , 
then G has no positive fractional efficient dominating set f with . �

Theorem 2.25: A positive fractional efficient dominating set f of a graph G is a universal
maximal fractional independent set, if and only if the set of all maximal fractional indepen-
dent sets and the set of all fractional efficient dominating sets are equal.

Proof: Suppose that a positive fractional efficient dominating set f of G is a universal maximal fractional
independent set. Then, by Corollary 1.14, , where the intersection is taken over all maximal
fractional independent sets of G. Thus,  for any maximal fractional independent set, g, of G. Hence,
g is an fractional efficient dominating set.

Conversely, suppose that any maximal fractional independent set, g, is an fractional efficient dominating set
of G. Then, . If f and g are two different maximal fractional independent sets of G, then

. Thus, any convex combination of f and g is a maximal fractional independent set.
Consequently,  is a convex set.

In other words, the set of all maximal fractional independent sets and the set of all universal maximal frac-
tional independent sets are equal. Since, , it follows that . �

Theorem 2.26: Every fractional efficient dominating set of a graph G is a universal
minimal fractional perfect dominating set of G.

Proof: Let f be a fractional efficient dominating set of G. Then . Let g be any minimal fractional per-
fect dominating set of G. Then Bg dominates V and . Consider h, a convex combination of f and
g. Then  and Bg dominates V. Thus, h is a fractional minimal dominating set. Since

 and , h is a minimal fractional perfect
dominating set. This shows that f is a universal minimal fractional perfect dominating set. �

There are many classes of graphs having at least one fractional efficient dominating set. The following con-
struction is useful for a class of graphs that have no fractional efficient dominating set. Let H be a graph con-
taining a vertex v such that there exist three vertices u1, u2, and w such that , , for

, and , and . Let F be the class of all graphs having the above
property. In the next theorem, we prove that the graphs in F have no fractional efficient dominating set.

i S∈
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Theorem 2.27: If , then G has no fractional efficient dominating set.

Proof: Let  and let  be a vertex such that there exist vertices u1, u2, and w satisfying the
conditions given above. Suppose that f is a fractional efficient dominating set of G. We claim that .
By definition of F,  and . If , then  for some x ∈

, where . Thus, , which contradicts the
fact that f is a fractional efficient dominating set. Consequently,  for all  and since

, . Because there is a vertex  that is adjacent to both v and w, then
 for some , a contradiction. �

The classes of graphs that admit universal maximal fractional independent sets are known. By Theorem 2.25,
the set of all graphs G, such that  must be a subset of this class.

Theorem 2.28: Let G be a graph. Then  if and only if G is a disjoint
union of t disjoint cliques  (possibly of different orders).

Proof: By Theorem 1.15 a graph G has a universal maximal fractional independent set if and only if there
exists a unique partition of V into sets that induces maximal cliques. If G belongs to this class and is not
the disjoint union of t disjoint cliques, there exist two vertices u and v such that . Thus, by
Theorem 2.27, G cannot have any positive fractional efficient dominating set. Hence, .
Proof of the converse is straightforward. �

3. Conclusion and Open Questions

Theorem 2.9 gives a sufficient condition for the set of all minimal fractional perfect dominating sets to be a
proper subset of the set of all minimal fractional dominating sets. Whether this condition is necessary, is an
interesting question for further investigation. If a universal minimal fractional dominating set f is a minimal
fractional perfect dominating set, then f is a universal minimal fractional perfect dominating set. Whether any
graph has a universal minimal fractional perfect dominating set that is not a universal minimal fractional dom-
inating set is still unknown. If a graph G has a universal minimal fractional perfect dominating set does it
guarantee the existence of a positive fractional efficient dominating set? Similarly, does the existence of a
positive fractional efficient dominating set imply the existence of a universal minimal fractional perfect dom-
inating set? Having characterized the graphs such that  (see Theorem 2.28) is it possible to
characterize those graphs having at least one fractional efficient dominating set as well as those graphs having
no fractional minimal dominating set other than fractional efficient dominating set?
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A
absorb, vertex, 33
all-negative path, 22
antipodal distribution, 19

B
basic

fractional minimal dominating set, 34
maximal fractional independent set, 34
minimal fractional perfect dominating set, 35

block, end, 10
boundary, dominating function, 32
branch, 10

C
Cartesian product, 16
Cayley graph, 28

Euler totient, 28
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combination, convex, 33
convex combination, 33
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D
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boundary, 32
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dominating number, fractional, 32
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basic fractional minimal, 34
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perfect minimal, 35
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positive fractional efficient, 37
universal fractional minimal, 33

E
eccentricity, 9
edge

degree, 22
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positive, 22

efficient dominating set, 37
fractional, 37
positive fractional, 37

end block, 10
Euler totient

Cayley graph, 28
function, 28

extreme vertex, 10

F
fractional

dominating
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set, 32

efficient dominating set, 37
positive, 37

independent set, 34
basic maximal, 34
maximal, 34

minimal dominating set, 32
universal, 33

perfect dominating set, 35
basic minimal, 35
minimal, 35

function
dominating, 32
Euler totient, 28
minimal dominating, 32
Schemmel totient, 30

fundamental triangle, 30

G
geodesic, 9

H
Hamilton cycle, 29
hypercube, 19

I
independent set, 34

fractional, 34
basic maximal, 34
universal maximal, 34

maximal, 34
maximal fractional, 34

L
Lemke graph, 18
length

negative section, 22
path, 22

line sigraph, 22

M
maximal

fractional independent set, 34
basic, 34
universal, 34

independent set, 34

KEY-WORD INDEX



Graph Theory Notes of New York LIX (2010)  43

minimal

dominating function, 32

dominating set, 32

basic fractional, 34

fractional perfect dominating set, 35

basic, 35

Steiner set, 10

N

negation of sigraph, 22

negative

degree, 22

edge, 22

section, 22

length, 22

neighborhood, closed, 32

number

fractional dominating, 32

pebbling, 15, 15
optimal, 15, 15

Steiner, 9
t-pebbling, 15

optimal, 15
upper Steiner, 10

O

odd two-pebbling property, 17

optimal

pebbling number, 15, 15
t-pebbling number, 15

P

path, 22

all-negative, 22

length, 22

pebbles, 15

pebbling

move, 15

number, 15, 15
optimal, 15, 15

property, 17

perfect dominating set, 35

basic minimal fractional, 35

fractional, 35

minimal fractional, 35

positive

degree, 22

edge, 22

fractional efficient dominating set, 37

set, dominating function, 32

product, Cartesian, 16

R

radius, 9
regular sigraph, 22

S

Schemmel totient function, 30

section, negative, 22

sharp vertex, 33

signature, 22

signed graph (sigraph), 22

sigraph, 22

line, 22

negation, 22

regular, 22

size of pebble function, 15

Steiner
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number, 9

upper, 10

set, 9
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tree, 9
subset, symmetric, 28

symmetric subset, 28

T

totient function

Euler, 28

Scemmel, 30

t-pebbling number, 15

optimal, 15

tree, Steiner, 9
triangle, fundamental, 30

two-pebbling property, 17

odd, 17

U

underlying graph, 22

universal

fractional minimal dominating set, 33

maximal fractional independent set, 34

upper Steiner number, 10

V

vertex
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distribution, 15
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